
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Cancelling
Java Threads

Killing Threads

 You likely expect for Java’s Thread class to have
some stop(), or kill(), or cancel() method

 It does not!
 And yet, we need to be able to forcefully

terminate threads all the time
 e.g., In our GUIs, we’ll want some “Cancel” buttons

that stop ongoing stuff
 And ongoing stuff is all in threads due to our JavaFX

Golden Rule from the previous set of lecture notes
 So how do we do this????
 This will be our first incursion into “much more in depth

than ICS332” content
 Many, many more are coming…

Deferred Cancellations
 Java used to have a Thread.stop() method, but it

has been deprecated for a long time
 Why would such a useful method be deprecated?
 Because it’s too dangerous!
 What if the thread is in the middle of doing something

like copying records from one data structure to another?
 If you brutally terminate it, then the thread’s job will be, say,

half done, which likely will break the whole application
 So Java cannot allow programmers to simply kill

threads because they might not do it right
 The typical Java philosophy, which has a lot of merit, even

though it often frustrates some developers
 Great, but what do we do then?

Deferred cancellations
 The point of deprecating the Thread.stop()

method is that a thread shouldn’t be stopped willy-
nilly at any point of its execution

 This means that the implementation of a thread
must specify when this thread can be stopped
safely

 In other terms: during its execution, a thread should
check regularly whether it should stop or not

 This is called deferred cancellation, and can be
done easily with a variable

 It’s called this way because the thread will terminate
(possibly quite a bit) after it’s been told to terminate

 Let’s see this on an example…

Deferred Cancellation Example

 Program DeferredCancellation.java on course
Web site

Victim
public class Victim extends Thread {
 private boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

Killer
. . .
// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {}

. . .

Deferred Cancellation Example

 Let’s run it and see if it works….

Victim
public class Victim extends Thread {
 private boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

Killer
. . .
// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {}

. . .

Deferred Cancellation Example

 It doesn’t!!!

Victim
public class Victim extends Thread {
 private boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

Killer
. . .
// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {}

. . .

Deferred Cancellation Example

 This fixes it!! (anybody’s used volatile before?)

Victim
public class Victim extends Thread {

 private volatile boolean

shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

Killer
. . .
// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {}

. . .

The volatile keyword in Java

 The story about volatile is interesting,
useful, but a bit long

 So for these lecture notes, let’s just accept
that it works
 If a thread doesn’t “see” a variable, make it

volatile
 The next set of lecture notes explains all

mysteries associated with volatile
 Let’s resume talking about thread deferred

cancelations…

Deferred Cancellation

 Summary so far:
 We cannot forcefully kill a thread
 Instead, we can set some variable and the thread

can check, whenever it’s safe, whether it should
terminate based on the variable value

 One remaining question: What if the thread is
blocked waiting for something, and thus will not
run the code that checks the variable value?
 e.g., it’s sleeping, it’s waiting for a network

connection,…
 Let’s see another example

Blocked Thread Example
 Say that in your application you have a thread, A, that’s

currently waiting on something, say, an incoming network
connection

 The main thread realizes that that network connection will
never come in (due to whatever application logic)

 So the main thread “terminates” thread A by setting the
relevant volatile variable to true

 But thread A is not checking the variable’s value
 It is stuck on some network call!!

 Therefore, it will never terminate
 It is very bad form to leave “zombie” threads like that lying

around
 And in fact it could break some applications’ logic

How to Cancel a Blocked Thread

 What we need: a way to make the thread
“snap out” of whatever is blocking it
 Calls like sleep(), join(), wait(), etc.

 To do this, we use the
Thread.interrupt() method

 Calling interrupt() causes an
InterruptedException to be raised in
the target thread’s code if/while it is blocked

 Let’s see an example, where we want to
cancel a thread that calls sleep()…

Example of Thread.interrupt()
Victim Thread Killer

public class Victim extends Thread {
 private volatile boolean die = false;

 public void stop() {
 this.die = true;
 }

 public void run() {
 . . .
 if (die) return;
 . . .
 try {
 Thread.sleep(100000000);
 } catch (InterruptedException e) {
 if (die) return;
 }
 . . .
}

Victim = new Victim();
victim.start();

. . .
// kill victim
victim.stop();
victim.interrupt();

 If interrupt() is
called while the victim
is not sleeping, nothing
happens

 But if the victim is
sleeping, then it will
snap out of it and check
the variable

Thread.interrupt() Thoughts
 So now we (finally?) understand the use of the
InterruptedException exception

 When you write your own code, if you know that you will
not interrupt your threads (or you only have one thread!),
then you typically do nothing when the exception is caught
 This is why I have, in a lot of code I’ve shown so far in

the course, empty catch clauses
 But if you write code with others and are in charge of the

code of one of many threads, it’s always a good idea to
deal with the InterruptedException

 Note that you can call Thread.interrupt() for
whatever purpose, not necessarily thread cancellation
 To force the thread to do something “now”, and then

perhaps resume its blocking/waiting operation

This is it
 This is it for cancellation of Java threads!

 Who knew it could be so involved?
 And we haven’t even explained volatile

 But this is concurrency for you (it’s hard, but at least it’s hopefully
interesting...)

 Of course, many people need this, and so Java provides a
ready-made solution: java.util.concurrent.FutureTask

 We’ll talk about java.util.concurrent later
 Our goal here is to truly understand the low level before using all

kinds of high-level, opaque abstractions

 We’ll have to talk about suspending/resuming threads as well
 But before we get there, we’ll have to talk about more advanced

topics

Conclusion

 We can now start on our multi-assignment
project

 This project will expose you to all main aspects
of concurrency

 It will also entail non-trivial, real software
development project
 Be prepared for “software redesign” and “code

refactoring” sessions
 Going for “quick and dirty” will be deadly
 Talking with others about software design will be key

 With this in mind, let’s look at Homework #2….

