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Deferred Cancellation Example

 How come this program doesn’t work???? 
 Let’s try it….

Victim
public class Victim extends Thread { 
  private boolean shouldStop = false; 

  public void tellToStop() { 
    this.shouldStop = true; 
  } 

  public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      // check if I should stop 
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 } 
}

Killer
. . . 
// create the victim thread 
Victim victim = new Victim(); 
victim.start(); 

try { 
  Thread.sleep(1000); 
} catch (InterruptedException e) {} 

// tell the thread to stop 
victim.tellToStop(); 

// Wait for victim 
// to really have stopped 
try { 
  victim.join(); 
} catch (InterruptedException e) {} 

. . . 



Why Doesn’t it Work???
 The reason why the previous program doesn’t work 

takes us down a path that: 
 You probably have never quite encountered 
 And yet is pervasive in computing
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 The reason why the previous program doesn’t work 

takes us down a path that: 
 You probably have never quite encountered 
 And yet is pervasive in computing 

 It doesn’t work because of performance optimizations  
 We’re in a world in which we’re trying to get as much 

performance as possible from the machine 
 As a result, we play hardware / compiler tricks that can 

break code! 
 We will come back to this with a vengeance later in the 

semester with other examples 
 For now, let’s just try to understand what’s going on with 

our program!



What are the Symptoms?

 One thread is looking at the shouldStop 
variable in a Victim object 

 Another thread is setting the shouldStop 
variable in that same object 

 And yet, the first thread is not seing the update 
 Conclusion: The two threads are not looking at 

the same memory location! 
 But how could this be??? 



What are the Symptoms?

 One thread is looking at the shouldStop 
variable in a Victim object 

 Another thread is setting the shouldStop 
variable in that same object 

 And yet, the first thread is not seing the update 
 Conclusion: The two threads are not looking at 

the same memory location! 
 But how could this be??? 
 One possibility: compiler optimizations



Compiler Optimization #1
 Say you’re a compiler, and 

you look at the victim’s 
run() method to optimize 
 Compilers are often myopic: 

they just look at code in 
methods, without understanding 
or analyzing the full program

Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 Any idea how a compiler may optimize this? 
 Say that the goal is to run as many iterations of the 

while loop as possible per time unit
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Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 In the above, we have an infinite loop, and at each iteration we 
check the value of a variable that does not change! 
 Yes, as a human, I know that another thread may change it, but as a 

compiler, I don’t 
 So the check is useless and we optimize the loop as follows

   while(true) {  
      if (shouldStop) { 
        break; 
      } 
    }

   if(not shouldStop) {  
      while (true){ } 
    }
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run() method to optimize 
 Compilers are often myopic: 
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Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 In the above, we have an infinite loop, and at each iteration we 
check the value of a variable that does not change! 
 Yes, as a human, I know that another thread may change it, but as a 

compiler, I don’t 
 So the check is useless and we optimize the loop as follows

   while(true) {  
      if (shouldStop) { 
        break; 
      } 
    }

   if(not shouldStop) {  
      while (true){ } 
    }

The victim doesn’t 
check whether it 

should stop!!



Compiler Optimization #2
 Say the compiler doesn’t do the 

previous optimization, for some 
reason 

 It may choose to keep variable 
shouldStop in a register after 
entering the loop! 

As you might have done writing 
assembly by hand in ICS312/
ICS331

Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 In this case, it doesn’t matter that another thread updates 
some RAM location!! 

 The victim just looks at its own register forever 
 Registers are private to a thread 
 (Remember your ICS332)



Our Broken Program
 In our program, the victim never dies! 
 Therefore, it’s possible that our compiler does 

one or both of the previous optimizations 
 Difficult to check, as we’d have too look at (i.e., 

disassemble) the machine code produced by the JIT 
(Just-In-Time) compiler from the byte code produced 
by the Java compiler! 

 But even if it doesn’t/cannot optimize, e.g., for 
code that’s not as simple, there could still be a 
problem in which the Victim reacts late to the 
termination request! 

 This has to do with caches!



Caching in a NutShell

Core #1 

L1 Cache

Core #2 

L1 Cache

RAM

 Classical cache hierarchy



Caching in a NutShell

Core #1 
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Caching in a NutShell

Core #1 

L1 Cache 

Core #2 
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Both threads read a value, which is copied into cache

Thread 
A

Thread 
B
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value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 Thread A modifies the value 
 Now, we have incoherent data!

Thread 
A

Thread 
B

value

value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 Our hardware implements cache coherency 
 Invalidate the value in Core #2’s cache, so that next time Thread B 

accesses the value, it will not read the one from Core #2’s cache 
(and get the one from Core #1’s cache) 

 See a hardware course / textbook for the gory details (and a little bit 
in this course later in the semester)

Thread 
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Thread 
B
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value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 But cache coherency is not immediate! 
 So Thread B may read a stale value! 

 If Thread B does 1 minute of work in between checks, then 
the cancellation could be deferred by 1 extra minute!

Thread 
A

Thread 
B

value

value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 Eventually, the system “catches up”, 
and all is well until next time

Thread 
A

Thread 
B

value

value valuevalue value



Cache Coherency and Stale Data
 Our processors do not implement sequential consistency 

 The cores do not see the same ordering of memory writes 
 Therefore a thread could read “stale” data 

 This is because trying to enforce sequential consistency is a 
speed killer 

 Every time somebody writes, stop everyone, update everybody’s 
cache, and resume everyone, so that we’re all on the same page 

 If you keep doing that, your programs are slooooooow 
 So for the sake of speed, we let threads get stale data with low 

probability 
 Turns out, we typically don’t care! Amazingly!  (Scarily?) 

 But, sometimes, of course, we need sequential consistency! 
 Like in our broken Java program, where after the killer has set 
shouldStop to true, the victim should see that value next time it 
accesses the variable 

 So, what do we do????



Memory Fences

 Our processors provide us with memory fence instructions 
 also called memory barriers 

 You can think of memory fences as expensive “clean up” 
instructions that make all memory consistent across cores 

 Usable only at the assembly level 
 If you were to put a memory fence instruction after every 

variable write and before every variable read you’d have 
sequential consistency and very slooooooow programs 

 The design principle: make things fast by default, and if 
programmers really need sequential consistency, then it’s 
on them to enable it (at the expense of speed) 

 But if as a programmer you don't know any of this, you’re 
in trouble!



So what do we need?

 To fix our program so that it is as responsive 
as possible we need two things 
 #1: Tell the compiler to not optimize the code in a 

way would remove memory accesses to the 
shouldStop variable 

 #2: Insert memory fence instructions before reads 
from the variable and after writes to the variable 
 So that we can have sequential consistency for 

accesses to that variable 
 And Java gives us an easy way to do this…



The volatile keyword
 If we declare the shouldStop variable volatile, we 

get both the things we need! 
 i.e., the Java compiler won’t optimize, and memory fence 

instructions are inserted



The volatile keyword
 If we declare the shouldStop variable volatile, we 

get both the things we need! 
 i.e., the Java compiler won’t optimize, and memory fence 

instructions are inserted

public class Victim extends Thread { 

  private volatile boolean shouldStop = false; 

  public void tellToStop() { 
    this.shouldStop = true; 
  } 

  public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      // check if I should stop 
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 } 
}

// create the victim thread 
Victim victim = new Victim(); 
victim.start(); 

try { 
  Thread.sleep(1000); 
} catch (InterruptedException e) { 
} 

// tell the thread to stop 
victim.tellToStop(); 

// Wait for victim 
// to really have stopped 
try { 
  victim.join(); 
} catch (InterruptedException e) { 
} 

makes the 
program work!



volatile Example
Some Class Threads

public class SomeClass { 
  private int var1; 
  private volatile int var2; 

  public int get1() { 
    return var1; 
  } 
  public void set1(int v) { 
    var1 = v; 
  } 
  public int get2() { 
    return var2; 
  } 
  public void set2(int v) { 
    var2 = v; 
  } 
}

SomeClass stuff; 

// Thread 1 
stuff.set1(12); 
. . . 
stuff.set2(42); 
. . . 

// Thread 2 
stuff.get1(); 
. . . 
stuff.get2(); 

. . .

Cheap, but 
may get stale 
value (or 
never!)

Expensive, but 
guaranteed to 
get latest value



How Slow is it???

 The course Web site has a program called 
VolatileStress.java 

 Let’s look at it, run it, and get a sense of how 
expensive memory fences are… 

 Take-away: don’t use volatile when you 
don’t need it!



Conclusion
 Many Java developers don’t know much about volatile 

 And there is a lot of confusion, misinformation, 
misunderstanding out there (e.g., on StackOverflow) 

 Yet volatile can be crucial (as in previous slides) 
 The reason why you might get by without volatile is 

that what it does for us is also done (under the cover) in 
other situations 

 e.g., in our broken program that hangs, if we add print 
statements, then it works! 

 We’ll talk more about why that is later! 
 So, volatile is not always needed and in fact some 

developers have not heard of it at all 
 Until the day it is needed and then all hell breaks loose


