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Deferred Cancellation Example

 How come this program doesn’t work???? 
 Let’s try it….

Victim
public class Victim extends Thread { 
  private boolean shouldStop = false; 

  public void tellToStop() { 
    this.shouldStop = true; 
  } 

  public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      // check if I should stop 
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 } 
}

Killer
. . . 
// create the victim thread 
Victim victim = new Victim(); 
victim.start(); 

try { 
  Thread.sleep(1000); 
} catch (InterruptedException e) {} 

// tell the thread to stop 
victim.tellToStop(); 

// Wait for victim 
// to really have stopped 
try { 
  victim.join(); 
} catch (InterruptedException e) {} 

. . . 



Why Doesn’t it Work???
 The reason why the previous program doesn’t work 

takes us down a path that: 
 You probably have never quite encountered 
 And yet is pervasive in computing
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 It doesn’t work because of performance optimizations  
 We’re in a world in which we’re trying to get as much 

performance as possible from the machine 
 As a result, we play hardware / compiler tricks that can 

break code! 
 We will come back to this with a vengeance later in the 

semester with other examples 
 For now, let’s just try to understand what’s going on with 

our program!



What are the Symptoms?

 One thread is looking at the shouldStop 
variable in a Victim object 

 Another thread is setting the shouldStop 
variable in that same object 

 And yet, the first thread is not seing the update 
 Conclusion: The two threads are not looking at 

the same memory location! 
 But how could this be??? 
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 One thread is looking at the shouldStop 
variable in a Victim object 

 Another thread is setting the shouldStop 
variable in that same object 

 And yet, the first thread is not seing the update 
 Conclusion: The two threads are not looking at 

the same memory location! 
 But how could this be??? 
 One possibility: compiler optimizations



Compiler Optimization #1
 Say you’re a compiler, and 

you look at the victim’s 
run() method to optimize 
 Compilers are often myopic: 

they just look at code in 
methods, without understanding 
or analyzing the full program

Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 Any idea how a compiler may optimize this? 
 Say that the goal is to run as many iterations of the 

while loop as possible per time unit



Compiler Optimization #1
 Say you’re a compiler, and 

you look at the victim’s 
run() method to optimize 
 Compilers are often myopic: 

they just look at code in 
methods, without understanding 
or analyzing the full program

Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 In the above, we have an infinite loop, and at each iteration we 
check the value of a variable that does not change! 
 Yes, as a human, I know that another thread may change it, but as a 

compiler, I don’t 
 So the check is useless and we optimize the loop as follows

   while(true) {  
      if (shouldStop) { 
        break; 
      } 
    }

   if(not shouldStop) {  
      while (true){ } 
    }
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Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 In the above, we have an infinite loop, and at each iteration we 
check the value of a variable that does not change! 
 Yes, as a human, I know that another thread may change it, but as a 

compiler, I don’t 
 So the check is useless and we optimize the loop as follows

   while(true) {  
      if (shouldStop) { 
        break; 
      } 
    }

   if(not shouldStop) {  
      while (true){ } 
    }

The victim doesn’t 
check whether it 

should stop!!



Compiler Optimization #2
 Say the compiler doesn’t do the 

previous optimization, for some 
reason 

 It may choose to keep variable 
shouldStop in a register after 
entering the loop! 

As you might have done writing 
assembly by hand in ICS312/
ICS331

Victim
 public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 }

 In this case, it doesn’t matter that another thread updates 
some RAM location!! 

 The victim just looks at its own register forever 
 Registers are private to a thread 
 (Remember your ICS332)



Our Broken Program
 In our program, the victim never dies! 
 Therefore, it’s possible that our compiler does 

one or both of the previous optimizations 
 Difficult to check, as we’d have too look at (i.e., 

disassemble) the machine code produced by the JIT 
(Just-In-Time) compiler from the byte code produced 
by the Java compiler! 

 But even if it doesn’t/cannot optimize, e.g., for 
code that’s not as simple, there could still be a 
problem in which the Victim reacts late to the 
termination request! 

 This has to do with caches!



Caching in a NutShell

Core #1 

L1 Cache

Core #2 

L1 Cache

RAM

 Classical cache hierarchy



Caching in a NutShell

Core #1 

L1 Cache

Core #2 

L1 Cache

RAM

 One thread on each core

Thread 
A

Thread 
B



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

Both threads read a value, which is copied into cache

Thread 
A

Thread 
B

value

value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 Thread A modifies the value 
 Now, we have incoherent data!

Thread 
A

Thread 
B

value

value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 Our hardware implements cache coherency 
 Invalidate the value in Core #2’s cache, so that next time Thread B 

accesses the value, it will not read the one from Core #2’s cache 
(and get the one from Core #1’s cache) 

 See a hardware course / textbook for the gory details (and a little bit 
in this course later in the semester)

Thread 
A

Thread 
B

value

value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 But cache coherency is not immediate! 
 So Thread B may read a stale value! 

 If Thread B does 1 minute of work in between checks, then 
the cancellation could be deferred by 1 extra minute!

Thread 
A

Thread 
B

value

value value



Caching in a NutShell

Core #1 

L1 Cache 

Core #2 

L1 Cache 

RAM

 Eventually, the system “catches up”, 
and all is well until next time

Thread 
A

Thread 
B

value

value valuevalue value



Cache Coherency and Stale Data
 Our processors do not implement sequential consistency 

 The cores do not see the same ordering of memory writes 
 Therefore a thread could read “stale” data 

 This is because trying to enforce sequential consistency is a 
speed killer 

 Every time somebody writes, stop everyone, update everybody’s 
cache, and resume everyone, so that we’re all on the same page 

 If you keep doing that, your programs are slooooooow 
 So for the sake of speed, we let threads get stale data with low 

probability 
 Turns out, we typically don’t care! Amazingly!  (Scarily?) 

 But, sometimes, of course, we need sequential consistency! 
 Like in our broken Java program, where after the killer has set 
shouldStop to true, the victim should see that value next time it 
accesses the variable 

 So, what do we do????



Memory Fences

 Our processors provide us with memory fence instructions 
 also called memory barriers 

 You can think of memory fences as expensive “clean up” 
instructions that make all memory consistent across cores 

 Usable only at the assembly level 
 If you were to put a memory fence instruction after every 

variable write and before every variable read you’d have 
sequential consistency and very slooooooow programs 

 The design principle: make things fast by default, and if 
programmers really need sequential consistency, then it’s 
on them to enable it (at the expense of speed) 

 But if as a programmer you don't know any of this, you’re 
in trouble!



So what do we need?

 To fix our program so that it is as responsive 
as possible we need two things 
 #1: Tell the compiler to not optimize the code in a 

way would remove memory accesses to the 
shouldStop variable 

 #2: Insert memory fence instructions before reads 
from the variable and after writes to the variable 
 So that we can have sequential consistency for 

accesses to that variable 
 And Java gives us an easy way to do this…



The volatile keyword
 If we declare the shouldStop variable volatile, we 

get both the things we need! 
 i.e., the Java compiler won’t optimize, and memory fence 

instructions are inserted



The volatile keyword
 If we declare the shouldStop variable volatile, we 

get both the things we need! 
 i.e., the Java compiler won’t optimize, and memory fence 

instructions are inserted

public class Victim extends Thread { 

  private volatile boolean shouldStop = false; 

  public void tellToStop() { 
    this.shouldStop = true; 
  } 

  public void run() { 
    System.out.println(“Hello World!”); 
    while(true) {  
      // check if I should stop 
      if (shouldStop) { 
        break; 
      } 
    } 
    System.out.println(“AAARGH!”); 
 } 
}

// create the victim thread 
Victim victim = new Victim(); 
victim.start(); 

try { 
  Thread.sleep(1000); 
} catch (InterruptedException e) { 
} 

// tell the thread to stop 
victim.tellToStop(); 

// Wait for victim 
// to really have stopped 
try { 
  victim.join(); 
} catch (InterruptedException e) { 
} 

makes the 
program work!



volatile Example
Some Class Threads

public class SomeClass { 
  private int var1; 
  private volatile int var2; 

  public int get1() { 
    return var1; 
  } 
  public void set1(int v) { 
    var1 = v; 
  } 
  public int get2() { 
    return var2; 
  } 
  public void set2(int v) { 
    var2 = v; 
  } 
}

SomeClass stuff; 

// Thread 1 
stuff.set1(12); 
. . . 
stuff.set2(42); 
. . . 

// Thread 2 
stuff.get1(); 
. . . 
stuff.get2(); 

. . .

Cheap, but 
may get stale 
value (or 
never!)

Expensive, but 
guaranteed to 
get latest value



How Slow is it???

 The course Web site has a program called 
VolatileStress.java 

 Let’s look at it, run it, and get a sense of how 
expensive memory fences are… 

 Take-away: don’t use volatile when you 
don’t need it!



Conclusion
 Many Java developers don’t know much about volatile 

 And there is a lot of confusion, misinformation, 
misunderstanding out there (e.g., on StackOverflow) 

 Yet volatile can be crucial (as in previous slides) 
 The reason why you might get by without volatile is 

that what it does for us is also done (under the cover) in 
other situations 

 e.g., in our broken program that hangs, if we add print 
statements, then it works! 

 We’ll talk more about why that is later! 
 So, volatile is not always needed and in fact some 

developers have not heard of it at all 
 Until the day it is needed and then all hell breaks loose


