
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

The Java volatile
Keyword

Deferred Cancellation Example

 How come this program doesn’t work????
 Let’s try it….

Victim
public class Victim extends Thread {
 private boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

Killer
. . .
// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {}

. . .

Why Doesn’t it Work???
 The reason why the previous program doesn’t work

takes us down a path that:
 You probably have never quite encountered
 And yet is pervasive in computing

Why Doesn’t it Work???
 The reason why the previous program doesn’t work

takes us down a path that:
 You probably have never quite encountered
 And yet is pervasive in computing

 It doesn’t work because of performance optimizations
 We’re in a world in which we’re trying to get as much

performance as possible from the machine
 As a result, we play hardware / compiler tricks that can

break code!
 We will come back to this with a vengeance later in the

semester with other examples
 For now, let’s just try to understand what’s going on with

our program!

What are the Symptoms?

 One thread is looking at the shouldStop
variable in a Victim object

 Another thread is setting the shouldStop
variable in that same object

 And yet, the first thread is not seing the update
 Conclusion: The two threads are not looking at

the same memory location!
 But how could this be???

What are the Symptoms?

 One thread is looking at the shouldStop
variable in a Victim object

 Another thread is setting the shouldStop
variable in that same object

 And yet, the first thread is not seing the update
 Conclusion: The two threads are not looking at

the same memory location!
 But how could this be???
 One possibility: compiler optimizations

Compiler Optimization #1
 Say you’re a compiler, and

you look at the victim’s
run() method to optimize
 Compilers are often myopic:

they just look at code in
methods, without understanding
or analyzing the full program

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 Any idea how a compiler may optimize this?
 Say that the goal is to run as many iterations of the

while loop as possible per time unit

Compiler Optimization #1
 Say you’re a compiler, and

you look at the victim’s
run() method to optimize
 Compilers are often myopic:

they just look at code in
methods, without understanding
or analyzing the full program

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 In the above, we have an infinite loop, and at each iteration we
check the value of a variable that does not change!
 Yes, as a human, I know that another thread may change it, but as a

compiler, I don’t
 So the check is useless and we optimize the loop as follows

 while(true) {
 if (shouldStop) {
 break;
 }
 }

 if(not shouldStop) {
 while (true){ }
 }

Compiler Optimization #1
 Say you’re a compiler, and

you look at the victim’s
run() method to optimize
 Compilers are often myopic:

they just look at code in
methods, without understanding
or analyzing the full program

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 In the above, we have an infinite loop, and at each iteration we
check the value of a variable that does not change!
 Yes, as a human, I know that another thread may change it, but as a

compiler, I don’t
 So the check is useless and we optimize the loop as follows

 while(true) {
 if (shouldStop) {
 break;
 }
 }

 if(not shouldStop) {
 while (true){ }
 }

The victim doesn’t
check whether it

should stop!!

Compiler Optimization #2
 Say the compiler doesn’t do the

previous optimization, for some
reason

 It may choose to keep variable
shouldStop in a register after
entering the loop!

As you might have done writing
assembly by hand in ICS312/
ICS331

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 In this case, it doesn’t matter that another thread updates
some RAM location!!

 The victim just looks at its own register forever
 Registers are private to a thread
 (Remember your ICS332)

Our Broken Program
 In our program, the victim never dies!
 Therefore, it’s possible that our compiler does

one or both of the previous optimizations
 Difficult to check, as we’d have too look at (i.e.,

disassemble) the machine code produced by the JIT
(Just-In-Time) compiler from the byte code produced
by the Java compiler!

 But even if it doesn’t/cannot optimize, e.g., for
code that’s not as simple, there could still be a
problem in which the Victim reacts late to the
termination request!

 This has to do with caches!

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Classical cache hierarchy

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 One thread on each core

Thread
A

Thread
B

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

Both threads read a value, which is copied into cache

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Thread A modifies the value
 Now, we have incoherent data!

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Our hardware implements cache coherency
 Invalidate the value in Core #2’s cache, so that next time Thread B

accesses the value, it will not read the one from Core #2’s cache
(and get the one from Core #1’s cache)

 See a hardware course / textbook for the gory details (and a little bit
in this course later in the semester)

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 But cache coherency is not immediate!
 So Thread B may read a stale value!

 If Thread B does 1 minute of work in between checks, then
the cancellation could be deferred by 1 extra minute!

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Eventually, the system “catches up”,
and all is well until next time

Thread
A

Thread
B

value

value valuevalue value

Cache Coherency and Stale Data
 Our processors do not implement sequential consistency

 The cores do not see the same ordering of memory writes
 Therefore a thread could read “stale” data

 This is because trying to enforce sequential consistency is a
speed killer

 Every time somebody writes, stop everyone, update everybody’s
cache, and resume everyone, so that we’re all on the same page

 If you keep doing that, your programs are slooooooow
 So for the sake of speed, we let threads get stale data with low

probability
 Turns out, we typically don’t care! Amazingly! (Scarily?)

 But, sometimes, of course, we need sequential consistency!
 Like in our broken Java program, where after the killer has set
shouldStop to true, the victim should see that value next time it
accesses the variable

 So, what do we do????

Memory Fences

 Our processors provide us with memory fence instructions
 also called memory barriers

 You can think of memory fences as expensive “clean up”
instructions that make all memory consistent across cores

 Usable only at the assembly level
 If you were to put a memory fence instruction after every

variable write and before every variable read you’d have
sequential consistency and very slooooooow programs

 The design principle: make things fast by default, and if
programmers really need sequential consistency, then it’s
on them to enable it (at the expense of speed)

 But if as a programmer you don't know any of this, you’re
in trouble!

So what do we need?

 To fix our program so that it is as responsive
as possible we need two things
 #1: Tell the compiler to not optimize the code in a

way would remove memory accesses to the
shouldStop variable

 #2: Insert memory fence instructions before reads
from the variable and after writes to the variable
 So that we can have sequential consistency for

accesses to that variable
 And Java gives us an easy way to do this…

The volatile keyword
 If we declare the shouldStop variable volatile, we

get both the things we need!
 i.e., the Java compiler won’t optimize, and memory fence

instructions are inserted

The volatile keyword
 If we declare the shouldStop variable volatile, we

get both the things we need!
 i.e., the Java compiler won’t optimize, and memory fence

instructions are inserted

public class Victim extends Thread {

 private volatile boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {
}

makes the
program work!

volatile Example
Some Class Threads

public class SomeClass {
 private int var1;
 private volatile int var2;

 public int get1() {
 return var1;
 }
 public void set1(int v) {
 var1 = v;
 }
 public int get2() {
 return var2;
 }
 public void set2(int v) {
 var2 = v;
 }
}

SomeClass stuff;

// Thread 1
stuff.set1(12);
. . .
stuff.set2(42);
. . .

// Thread 2
stuff.get1();
. . .
stuff.get2();

. . .

Cheap, but
may get stale
value (or
never!)

Expensive, but
guaranteed to
get latest value

How Slow is it???

 The course Web site has a program called
VolatileStress.java

 Let’s look at it, run it, and get a sense of how
expensive memory fences are…

 Take-away: don’t use volatile when you
don’t need it!

Conclusion
 Many Java developers don’t know much about volatile

 And there is a lot of confusion, misinformation,
misunderstanding out there (e.g., on StackOverflow)

 Yet volatile can be crucial (as in previous slides)
 The reason why you might get by without volatile is

that what it does for us is also done (under the cover) in
other situations

 e.g., in our broken program that hangs, if we add print
statements, then it works!

 We’ll talk more about why that is later!
 So, volatile is not always needed and in fact some

developers have not heard of it at all
 Until the day it is needed and then all hell breaks loose

