The Java volatile

Keyword

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

Deferred Cancellation Example

public class Victim extends Thread {
private boolean shouldStop = false;

public void tellToStop () {
this.shouldStop = true;

}

public void run() {
System.out.println(“Hello World!”) ;
while (true) {
// check if I should stop
if (shouldStop) {
break;

}

}
System.out.println (“AAARGH!"”) ;

// create the victim thread
Victim victim = new Victim() ;
victim.start () ;

try {
Thread.sleep(1000) ;
} catch (InterruptedException e)

// tell the thread to stop
victim. tellToStop() ;

// Wait for wvictim
// to really have stopped
try {
victim. join () ;
} catch (InterruptedException e)

{}

{}

® How come this program doesn’t work?7???

Let's try it....

"
Why Doesn’t it Work??2?

B The reason why the previous program doesn’t work
takes us down a path that:
You probably have never quite encountered
And yet is pervasive in computing

"
Why Doesn’t it Work??2?

® The reason why the previous program doesn’t work
takes us down a path that:

You probably have never quite encountered
And yet is pervasive in computing
m |t doesn’t work because of performance optimizations

®m \WWe're in a world in which we’re trying to get as much
performance as possible from the machine

® As a result, we play hardware / compiler tricks that can
break code!

We will come back to this with a vengeance later in the
semester with other examples

® For now, let’s just try to understand what's going on with
our program!

"
What are the Symptoms?

m One thread is looking at the shouldStop
variable in a Victim object

m Another thread is setting the shouldStop
variable in that same object
®m And yet, the first thread is not seing the update

B Conclusion: The two threads are not looking at
the same memory location!

® But how could this be???

"
What are the Symptoms?

m One thread is looking at the shouldStop
variable in a Victim object

m Another thread is setting the shouldStop
variable in that same object

®m And yet, the first thread is not seing the update

B Conclusion: The two threads are not looking at
the same memory location!

® But how could this be???
m One possibility: compiler optimizations

"
Compiler Optimization #1

= Say you'e a compller, and

you look at the victim’s public void run() {
run () method to optimize System.out.println(“Hello World!”);

while (true) {
Compilers are often myopic:

if (shouldStop) {

they just look at code in } A
methods, without understanding }
or analyzing the full program System.out.println (“AAARGH!”) ;

}

® Any idea how a compiler may optimize this?

m Say that the goal is to run as many iterations of the
while loop as possible per time unit

"
Compiler Optimization #1

= Say you'e a compller, and

you look at the victim’s public void run() {
run () method to optimize vswiif:r?éiﬁfa:jpfinun‘“Hell° World!”) ;
Compilers are often myopic: Af (shouldStop) {
they just look at code in : break;
methods, without understanding }
or analyzing the full program } System.out.println (“AAARGH!”) ;

® |n the above, we have an infinite loop, and at each iteration we
check the value of a variable that does not change!

®m Yes, as a human, | know that another thread may change it, but as a
compiler, | don’t

®m So the check is useless and we optimize the loop as follows

while (true) { if (not shouldStop) ({

if (shouldStop) { while (true){ }
b, — >
}

}

"
Compiler Optimization #1

= Say you'e a compller, and

you look at the victim’s
run () method to optim

Compilers are often myopic: if (shouldStop) {

they just look at code in : break;

methods, without understanding }

or analyzing the full program System.out.println (“ARARGH!") ;

public void run() {
iZEB System.out.println(“Hello World!'!”) ;
while (true) {

}

® |n the above, we hav
check the value of a

B Yes, as a human, | ki
compiler, | don't

® So the check is usele_

ch iteration we
The victim doesn’t ge!

check whether it ngeit, butasa

should stop!!
as follows

while (true) {
if (shouldStop) {
break;
}
}

if (not shoui&ﬁggf) {
while (true) {\}
|:: > }

Compiler Optimization #2

m Say the compiler doesn’t do the

previous optimization, for some
reason

® |t may choose to keep variable
shouldStop in a register after
entering the loop!

As you might have done writing

assembly by hand in ICS312/
ICS331

public void run() {

System.out.println(“Hello World!'!”) ;
while (true) {

if (shouldStop) {
break;

}
}
System.out.println (“AAARGH!") ;
}

® |n this case, it doesn’t matter that another thread updates

some RAM location!!

® The victim just looks at its own register forever
m Registers are private to a thread

® (Remember your ICS332)

" J
Our Broken Program

® |n our program, the victim never dies!

® Therefore, it's possible that our compiler does

one or both of the previous optimizations
Difficult to check, as we’'d have too look at (i.e.,
disassemble) the machine code produced by the JIT
(Just-In-Time) compiler from the byte code produced
by the Java compiler!

m But even if it doesn’t/cannot optimize, e.qg., for
code that's not as simple, there could still be a
problem in which the Victim reacts late to the
termination request!

® This has to do with caches!

Caching in a NutShell

m Classical cache hierarchy

Core #1

Core #2

Caching in a NutShell

B One thread on each core

‘ Core #1 ‘ Core #2

Caching in a NutShell

m Both threads read a value, which is copied into cache

‘ Core #1 ‘ Core #2

Caching in a NutShell

B Thread A modifies the value
® Now, we have incoherent data!

‘ Core #1 ‘ Core #2

Caching in a NutShell

®m QOur hardware implements cache coherency

® |nvalidate the value in Core #2’s cache, so that next time Thread B
accesses the value, it will not read the one from Core #2’s cache
(and get the one from Core #1's cache)

B See a hardware course / textbook for the gory details (and a little bit
in this course later in the semester)

Core #1 Core #2

Caching in a NutShell

m But cache coherency is not immediate!
® So Thread B may read a stale value!

m [f Thread B does 1 minute of work in between checks, then
the cancellation could be deferred by 1 extra minute!

‘ Core #1 ‘ Core #2

Caching in a NutShell

® Eventually, the system “catches up”,
and all is well until next time

‘ Core #1 ‘ Core #2

Cache Coherency and Stale Data

® Qur processors do not implement sequential consistency
The cores do not see the same ordering of memory writes
Therefore a thread could read “stale” data

® This is because trying to enforce sequential consistency is a
speed Kkiller

Every time somebody writes, stop everyone, update everybody’s
cache, and resume everyone, so that we're all on the same page

If you keep doing that, your programs are slooooooow
m So for the sake of speed, we let threads get stale data with low
probability
Turns out, we typically don’t care! Amazingly! (Scarily?)
= But, sometimes, of course, we need sequential consistency!

Like in our broken Java program, where after the killer has set
shouldStop to true, the victim should see that value next time it
accesses the variable

®m So, what do we do????

" J
Memory Fences

® Our processors provide us with memory fence instructions
also called memory barriers

® You can think of memory fences as expensive “clean up”
iInstructions that make all memory consistent across cores

Usable only at the assembly level

m |[f you were to put a memory fence instruction after every
variable write and before every variable read you'd have
sequential consistency and very slooooooow programs

® The design principle: make things fast by default, and if
programmers really need sequential consistency, then it's
on them to enable it (at the expense of speed)

But if as a programmer you don't know any of this, you're
in trouble!

" A
So what do we need?

® o fix our program so that it is as responsive
as possible we need two things

#1: Tell the compiler to not optimize the code in a
way would remove memory accesses to the
shouldStop variable

#2: Insert memory fence instructions before reads
from the variable and after writes to the variable

= So that we can have sequential consistency for
accesses to that variable

® And Java gives us an easy way to do this...

" J———
The volatile keyword

m |f we declare the shouldStop variable volatile, we
get both the things we need!

l.e., the Java compiler won'’t optimize, and memory fence
Instructions are inserted

" J
The volatile keyword

m |f we declare the shouldStop variable volatile, we
get both the things we need!

l.e., the Java compiler won'’t optimize, and memory fence
Instructions are inserted

public class Victim extends Thread { // create the victim thread

private volatile boolean shouldStop = false; VJ:'CtJ:'m LB = EE Sl
victim.start () ;
public void tell op() {

this.shouldStop = try {
} Thread.sleep(1000) ;

catch (InterruptedException e) ({

public void run() {

System.out.println (“Hello makeS the
AT () / tell the thread to stop

/7 check if I should st| Program work! yictim.tellrostop();
if (shouldStop) {

break; - // Wait for victim
} , // to really have stopped
} try {
System.out.println (“AAARGH!") ; victim.join() ; .
} } catch (InterruptedException e) {
} }

public class SomeClass {

}

volatile Example

private int varl;

private volatile int var2;

public int getl () {
return varl;

}

public void setl (int v) {
varl = v;

}

public int get2() {
return var2;

}

public void set2 (int v) {
var2 = v;

}

SomeClass stuff;

// Thread 1
stuff.setl (12) ;

stuff.set2(42);

>
~

// Thread 2
stuff.getl () ;

stuff.get2();

Cheap, but
may get stale
value (or
neverl!)

1 Expensive, but

guaranteed to

get latest value

~

J

" A
How Slow is it??7?

®m The course Web site has a program called
VolatileStress. java

m |et's look at it, run it, and get a sense of how
expensive memory fences are...

m Take-away:. don't use volatile when you
don’t need it!

" A
Conclusion

m Many Java developers don’t know much about volatile

And there is a lot of confusion, misinformation,
misunderstanding out there (e.g., on StackOverflow)

m Yet volatile can be crucial (as in previous slides)

m [he reason why you might get by without volatile is

that what it does for us is also done (under the cover) in
other situations

e.g., in our broken program that hangs, if we add print
statements, then it works!

We'll talk more about why that is later!

m S0, volatile is not always needed and in fact some
developers have not heard of it at all

m Until the day it is needed and then all hell breaks loose

