
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

The Java volatile
Keyword

Deferred Cancellation Example

 How come this program doesn’t work????
 Let’s try it….

Victim
public class Victim extends Thread {
 private boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

Killer
. . .
// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {}

. . .

Why Doesn’t it Work???
 The reason why the previous program doesn’t work

takes us down a path that:
 You probably have never quite encountered
 And yet is pervasive in computing

Why Doesn’t it Work???
 The reason why the previous program doesn’t work

takes us down a path that:
 You probably have never quite encountered
 And yet is pervasive in computing

 It doesn’t work because of performance optimizations
 We’re in a world in which we’re trying to get as much

performance as possible from the machine
 As a result, we play hardware / compiler tricks that can

break code!
 We will come back to this with a vengeance later in the

semester with other examples
 For now, let’s just try to understand what’s going on with

our program!

What are the Symptoms?

 One thread is looking at the shouldStop
variable in a Victim object

 Another thread is setting the shouldStop
variable in that same object

 And yet, the first thread is not seing the update
 Conclusion: The two threads are not looking at

the same memory location!
 But how could this be???

What are the Symptoms?

 One thread is looking at the shouldStop
variable in a Victim object

 Another thread is setting the shouldStop
variable in that same object

 And yet, the first thread is not seing the update
 Conclusion: The two threads are not looking at

the same memory location!
 But how could this be???
 One possibility: compiler optimizations

Compiler Optimization #1
 Say you’re a compiler, and

you look at the victim’s
run() method to optimize
 Compilers are often myopic:

they just look at code in
methods, without understanding
or analyzing the full program

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 Any idea how a compiler may optimize this?
 Say that the goal is to run as many iterations of the

while loop as possible per time unit

Compiler Optimization #1
 Say you’re a compiler, and

you look at the victim’s
run() method to optimize
 Compilers are often myopic:

they just look at code in
methods, without understanding
or analyzing the full program

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 In the above, we have an infinite loop, and at each iteration we
check the value of a variable that does not change!
 Yes, as a human, I know that another thread may change it, but as a

compiler, I don’t
 So the check is useless and we optimize the loop as follows

 while(true) {
 if (shouldStop) {
 break;
 }
 }

 if(not shouldStop) {
 while (true){ }
 }

Compiler Optimization #1
 Say you’re a compiler, and

you look at the victim’s
run() method to optimize
 Compilers are often myopic:

they just look at code in
methods, without understanding
or analyzing the full program

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 In the above, we have an infinite loop, and at each iteration we
check the value of a variable that does not change!
 Yes, as a human, I know that another thread may change it, but as a

compiler, I don’t
 So the check is useless and we optimize the loop as follows

 while(true) {
 if (shouldStop) {
 break;
 }
 }

 if(not shouldStop) {
 while (true){ }
 }

The victim doesn’t
check whether it

should stop!!

Compiler Optimization #2
 Say the compiler doesn’t do the

previous optimization, for some
reason

 It may choose to keep variable
shouldStop in a register after
entering the loop!

As you might have done writing
assembly by hand in ICS312/
ICS331

Victim
 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }

 In this case, it doesn’t matter that another thread updates
some RAM location!!

 The victim just looks at its own register forever
 Registers are private to a thread
 (Remember your ICS332)

Our Broken Program
 In our program, the victim never dies!
 Therefore, it’s possible that our compiler does

one or both of the previous optimizations
 Difficult to check, as we’d have too look at (i.e.,

disassemble) the machine code produced by the JIT
(Just-In-Time) compiler from the byte code produced
by the Java compiler!

 But even if it doesn’t/cannot optimize, e.g., for
code that’s not as simple, there could still be a
problem in which the Victim reacts late to the
termination request!

 This has to do with caches!

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Classical cache hierarchy

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 One thread on each core

Thread
A

Thread
B

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

Both threads read a value, which is copied into cache

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Thread A modifies the value
 Now, we have incoherent data!

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Our hardware implements cache coherency
 Invalidate the value in Core #2’s cache, so that next time Thread B

accesses the value, it will not read the one from Core #2’s cache
(and get the one from Core #1’s cache)

 See a hardware course / textbook for the gory details (and a little bit
in this course later in the semester)

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 But cache coherency is not immediate!
 So Thread B may read a stale value!

 If Thread B does 1 minute of work in between checks, then
the cancellation could be deferred by 1 extra minute!

Thread
A

Thread
B

value

value value

Caching in a NutShell

Core #1

L1 Cache

Core #2

L1 Cache

RAM

 Eventually, the system “catches up”,
and all is well until next time

Thread
A

Thread
B

value

value valuevalue value

Cache Coherency and Stale Data
 Our processors do not implement sequential consistency

 The cores do not see the same ordering of memory writes
 Therefore a thread could read “stale” data

 This is because trying to enforce sequential consistency is a
speed killer

 Every time somebody writes, stop everyone, update everybody’s
cache, and resume everyone, so that we’re all on the same page

 If you keep doing that, your programs are slooooooow
 So for the sake of speed, we let threads get stale data with low

probability
 Turns out, we typically don’t care! Amazingly! (Scarily?)

 But, sometimes, of course, we need sequential consistency!
 Like in our broken Java program, where after the killer has set
shouldStop to true, the victim should see that value next time it
accesses the variable

 So, what do we do????

Memory Fences

 Our processors provide us with memory fence instructions
 also called memory barriers

 You can think of memory fences as expensive “clean up”
instructions that make all memory consistent across cores

 Usable only at the assembly level
 If you were to put a memory fence instruction after every

variable write and before every variable read you’d have
sequential consistency and very slooooooow programs

 The design principle: make things fast by default, and if
programmers really need sequential consistency, then it’s
on them to enable it (at the expense of speed)

 But if as a programmer you don't know any of this, you’re
in trouble!

So what do we need?

 To fix our program so that it is as responsive
as possible we need two things
 #1: Tell the compiler to not optimize the code in a

way would remove memory accesses to the
shouldStop variable

 #2: Insert memory fence instructions before reads
from the variable and after writes to the variable
 So that we can have sequential consistency for

accesses to that variable
 And Java gives us an easy way to do this…

The volatile keyword
 If we declare the shouldStop variable volatile, we

get both the things we need!
 i.e., the Java compiler won’t optimize, and memory fence

instructions are inserted

The volatile keyword
 If we declare the shouldStop variable volatile, we

get both the things we need!
 i.e., the Java compiler won’t optimize, and memory fence

instructions are inserted

public class Victim extends Thread {

 private volatile boolean shouldStop = false;

 public void tellToStop() {
 this.shouldStop = true;
 }

 public void run() {
 System.out.println(“Hello World!”);
 while(true) {
 // check if I should stop
 if (shouldStop) {
 break;
 }
 }
 System.out.println(“AAARGH!”);
 }
}

// create the victim thread
Victim victim = new Victim();
victim.start();

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
}

// tell the thread to stop
victim.tellToStop();

// Wait for victim
// to really have stopped
try {
 victim.join();
} catch (InterruptedException e) {
}

makes the
program work!

volatile Example
Some Class Threads

public class SomeClass {
 private int var1;
 private volatile int var2;

 public int get1() {
 return var1;
 }
 public void set1(int v) {
 var1 = v;
 }
 public int get2() {
 return var2;
 }
 public void set2(int v) {
 var2 = v;
 }
}

SomeClass stuff;

// Thread 1
stuff.set1(12);
. . .
stuff.set2(42);
. . .

// Thread 2
stuff.get1();
. . .
stuff.get2();

. . .

Cheap, but
may get stale
value (or
never!)

Expensive, but
guaranteed to
get latest value

How Slow is it???

 The course Web site has a program called
VolatileStress.java

 Let’s look at it, run it, and get a sense of how
expensive memory fences are…

 Take-away: don’t use volatile when you
don’t need it!

Conclusion
 Many Java developers don’t know much about volatile

 And there is a lot of confusion, misinformation,
misunderstanding out there (e.g., on StackOverflow)

 Yet volatile can be crucial (as in previous slides)
 The reason why you might get by without volatile is

that what it does for us is also done (under the cover) in
other situations

 e.g., in our broken program that hangs, if we add print
statements, then it works!

 We’ll talk more about why that is later!
 So, volatile is not always needed and in fact some

developers have not heard of it at all
 Until the day it is needed and then all hell breaks loose

