Java.concurrent.util

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" A
Java.util.concurrent

® \Ve have seen all the “low level” abstractions
for writing concurrent applications

® \We have seen other abstractions provided by
the java.util.concurrent package

B This package is intended to make life easier
when writing concurrent applications

m developed and peer-reviewed by concurrency
experts a lot smarter than us

B There are a LOT of things in it, with MANY
options

® Plenty of on-line documentation, tutorials,
examples

" JE
What’s in the Package?

® \What we've already seen/mentioned:
Locks
Condition Variables
CyclicBarrier
Semaphores
Atomic variables

® \What here about to see

ExecutorService and Future
Concurrent/Blocking collections

® A bunch of other things you can do check out on your own
CountDownLatch (very barrier-like)
Phaser (generalization of barriers)

Exchanger (threads “meet” and exchange information)
etc..

" A
The Thread Pool Concept

® \When writing concurrent applications, one often ends up
spawning off many short-lived “worker” threads that do some
useful tasks, throughout program execution

® Doing this by hand has several drawbacks
It requires code to be written
= We now know how to do it, but we're lazy?

One may want to control the maximum number of
threads that are running simultaneously to avoid
overload

= e.g., have as many running threads as cores

Creating threads is a bit expensive, and it may be a
better idea to keep threads “around” and reuse them

® Still more code we don’t want to write
® \What we really need is a “thread pool”

" A
Pools with ExecutorService

®m A Thread Pool is a (possibly fixed) set of threads

m Example:
| have a pool that contains 3 threads
| keep giving things to do to the pool
Up to 3 threads can be running at a given time

Extra things to do are queued and will be started
later when previous threads have completed

® java.concurrent.util provides just the right thing
nere:. ExecutorService

m | et’s see the code...

ExecutorService Interface

public class Task implements Runnable {

private String message;
private int iterations;

public Task(String s, int n) {
message = s; iterations = n;

}

public void run() {
for (int i=0; i < iterations; i++)
System.out.printin(message
try {
Thread.sleep(1000);
} catch (InterruptedException €) { }

}
}
}

{
)

import java.util.concurrent.”;

ExecutorService pool;
pool =
Executors.newFixedThreadPool(3);

pool.execute(new Task(“three”,3));
pool.execute(new Task(“two”,2));
pool.execute(new Task(“five”,5));
pool.execute(new Task(“six”,6));
pool.execute(new Task(“one”,1));

pool.shutdown();

" A
ExecutorService Interface

® The shutdown() method prevents new tasks from
being submitted, but running and submitted tasks
run to completion

® The shutdownNow() method prevents new tasks
from being submitted, but (attempts) to let only
currently running tasks finish

® The isTerminated() method returns true is there is
no pending task

m |t is possible to create thread pools that can grow,
and tons of other bells and whistles that you can
discover in the on-line documentation

" A
Callable: more than Runnable

®m \What if our “task” abstraction is one in which
a task returns something (i.e., some output)?

®m The concept of “a thread that returns
something” is provided by Java: Callable

public class Task implements Callable<SomeObject> {

public SomeObject call() {
/I Do some work

return new SomeQObiject(...);

}
}

" A
ExecutorService and Callable

® \We can use an ExecutorService to manage the
execution of Callables

B |n that case one uses the
ExecutorService.submit() method

B The call returns immediately with a Future

m A Future is an object that represents the result
of an asynchronous computation

® One can then do various things on the Future:

check if it's done, wait for it to be done, wait for it to
be done but with a time-out, etc.

B | et's see an example...

" J
Executor, Callable, Future

public class Task implements Callable<String> {
public String call() {
return new String(“stuff’);

}
}

ExecutorService pool = Executors.newFixedThreadPool(3);

Future<String> result1 = pool.submit(new Task());

try {
result1.get(10, TimeUnits.SECONDS);

} catch (InterruptedException | ExecutionException | TimeoutException ignore) {}

pool.shutdown();

" J
Concurrent/Blocking Collections

m Java provides thread-safe collection data structures

® Example: Queues
ConcurrentLinkedQueue: unbounded
LinkedBlockingQueue: bounded (thread may block)

Very important to read the documentation as there are
subtleties about what operations are atomic or not
= | et's look at https://docs.oracle.com/en/javaljavase/21/

docs/api/java.base/java/util/concurrent/
ConcurrentLinkedQueue.html

® High performance code written by experts
Using “lock free” magic we’ll come back to

m | et’s look at performance gains for a HashMap...

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html

" JEE
ConcurrentHashMap Performance

O ConcurrentHashMap HashMap + synchronized

12.000

9.000

6.000

TIME IN SECONDS

3.000

0.000
20000 320000 1280000 5120000 20480000 81920000

#ITERATIONS

on my laptop

" A
Conclusion

m [f java.util.concurrent implements what you need,
re-use it!

You have little hope of implementing something
faster

m But it's very important to master lower-level
concurrency abstractions as well

Understanding them is often necessary for using
higher-level abstractions well (and understand bugs)

And other languages don't provide as much as Java!
® Hence our Homework Assignments so far

m | et’s now look at Homework Assignment #8...

