
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Java.concurrent.util

Java.util.concurrent

 We have seen all the “low level” abstractions
for writing concurrent applications

 We have seen other abstractions provided by
the java.util.concurrent package

This package is intended to make life easier
when writing concurrent applications

 developed and peer-reviewed by concurrency
experts a lot smarter than us

There are a LOT of things in it, with MANY
options

Plenty of on-line documentation, tutorials,
examples

What’s in the Package?
 What we’ve already seen/mentioned:

 Locks
 Condition Variables
 CyclicBarrier
 Semaphores
 Atomic variables

 What here about to see
 ExecutorService and Future
 Concurrent/Blocking collections

 A bunch of other things you can do check out on your own
 CountDownLatch (very barrier-like)
 Phaser (generalization of barriers)
 Exchanger (threads “meet” and exchange information)
 etc..

The Thread Pool Concept
 When writing concurrent applications, one often ends up

spawning off many short-lived “worker” threads that do some
useful tasks, throughout program execution

 Doing this by hand has several drawbacks
 It requires code to be written

 We now know how to do it, but we’re lazy?
 One may want to control the maximum number of

threads that are running simultaneously to avoid
overload

 e.g., have as many running threads as cores
 Creating threads is a bit expensive, and it may be a

better idea to keep threads “around” and reuse them
 Still more code we don’t want to write

 What we really need is a “thread pool”

Pools with ExecutorService
 A Thread Pool is a (possibly fixed) set of threads
 Example:

 I have a pool that contains 3 threads
 I keep giving things to do to the pool
 Up to 3 threads can be running at a given time
 Extra things to do are queued and will be started

later when previous threads have completed
 java.concurrent.util provides just the right thing

here: ExecutorService
 Let’s see the code…

ExecutorService Interface
public class Task implements Runnable {
 private String message;
 private int iterations;

 public Task(String s, int n) {
 message = s; iterations = n;
 }

 public void run() {
 for (int i=0; i < iterations; i++) {
 System.out.println(message);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 }
 }
}

import java.util.concurrent.*;
. . .
ExecutorService pool;
pool =

Executors.newFixedThreadPool(3);

pool.execute(new Task(“three”,3));
pool.execute(new Task(“two”,2));
pool.execute(new Task(“five”,5));
pool.execute(new Task(“six”,6));
pool.execute(new Task(“one”,1));

pool.shutdown();

ExecutorService Interface
 The shutdown() method prevents new tasks from

being submitted, but running and submitted tasks
run to completion

 The shutdownNow() method prevents new tasks
from being submitted, but (attempts) to let only
currently running tasks finish

 The isTerminated() method returns true is there is
no pending task

 It is possible to create thread pools that can grow,
and tons of other bells and whistles that you can
discover in the on-line documentation

Callable: more than Runnable

 What if our “task” abstraction is one in which
a task returns something (i.e., some output)?

 The concept of “a thread that returns
something” is provided by Java: Callable

public class Task implements Callable<SomeObject> {

 public SomeObject call() {
 // Do some work
return new SomeObject(…);

 }
}

ExecutorService and Callable

 We can use an ExecutorService to manage the
execution of Callables

 In that case one uses the
ExecutorService.submit() method

 The call returns immediately with a Future
 A Future is an object that represents the result

of an asynchronous computation
 One can then do various things on the Future:

 check if it’s done, wait for it to be done, wait for it to
be done but with a time-out, etc.

 Let’s see an example…

Executor, Callable, Future

 public class Task implements Callable<String> {
 public String call() {
 return new String(“stuff”);
 }
 }

 ExecutorService pool = Executors.newFixedThreadPool(3);

 Future<String> result1 = pool.submit(new Task());

 try {
 result1.get(10, TimeUnits.SECONDS);
 } catch (InterruptedException | ExecutionException | TimeoutException ignore) {}

 pool.shutdown();

Concurrent/Blocking Collections
 Java provides thread-safe collection data structures
 Example: Queues

 ConcurrentLinkedQueue: unbounded
 LinkedBlockingQueue: bounded (thread may block)
 Very important to read the documentation as there are

subtleties about what operations are atomic or not
 Let’s look at https://docs.oracle.com/en/java/javase/21/

docs/api/java.base/java/util/concurrent/
ConcurrentLinkedQueue.html

 High performance code written by experts
 Using “lock free” magic we’ll come back to

 Let’s look at performance gains for a HashMap…

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentLinkedQueue.html

ConcurrentHashMap Performancefoo

10000 0.008 0.006

20000 0.004 0.011

40000 0.007 0.021

80000 0.007 0.017

160000 0.01 0.019

320000 0.019 0.036

640000 0.041 0.068

1280000 0.075 0.163

2560000 0.246 0.294

5120000 0.321 0.617

10240000 0.675 1.175

20480000 1.301 2.218

40960000 2.713 5.305

81920000 5.165 11.973

TI
M

E
IN

 S
EC

ON
DS

0.000

3.000

6.000

9.000

12.000

#ITERATIONS
20000 80000 320000 1280000 5120000 20480000 81920000

ConcurrentHashMap HashMap + synchronized

1

on my laptop

Conclusion
 If java.util.concurrent implements what you need,

re-use it!
 You have little hope of implementing something

faster
 But it’s very important to master lower-level

concurrency abstractions as well
 Understanding them is often necessary for using

higher-level abstractions well (and understand bugs)
 And other languages don’t provide as much as Java!

 Hence our Homework Assignments so far

 Let’s now look at Homework Assignment #8…

