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Implementing Lock?
 At this point we know how to use lock() and 

unlock() to create critical sections  
 Question: how does one implement lock()?  

 Granted, you will probably never need to as languages/
systems provide them 

 But it’s interesting to have some idea of how things work 
 And it will be our first attempt at truly reasoning 

about concurrency 
 The first natural attempt is to try to implement 

lock() and unlock() in software, like any other 
method/function 

 Following the pseudo-code in the previous set of lecture 
notes



Spinlocks
 We’ll use the following basic idea 
 A lock will be a boolean variable, initially set to 0 

 0 means: nobody “has the lock”, i.e., no thread is in the 
critical section defined by the lock 

 lock(): 
 While lock == 1, keep testing until the lock is == 0 
 When lock == 0, then set the lock to 1 

 So that other threads can’t get in 

 unlock() 
 set lock to 0 

 This is called spinning because if a thread is already 
in the critical section, another will keep testing the 
lock over and over



Assumptions
 To simplify we’ll assume 

 A single core (false concurrency) 
 An OS with a scheduler that does some type of round-

robin scheduling (time-slicing via context-switching) 
 We’re going to go through a series of implementations 

 Re-tracing the history of “software spinlocks" 
 We’ll analyze each implementation for correctness 
 We assume that the OS scheduler is an adversary 

 It tries to place context-switches inconveniently so as to 
break correctness 

 If there is one case, no matter how unlikely, in which 
the execution is incorrect, then we declare the code 
broken



Software Spin Locks: v0
 The simplest (but wrong) possible implementation

void unlock(int *lock) { 
  *lock = 0; 
}

void lock(int *lock) { 
  while (*lock) {}  // spin 
  *lock = 1; 
}

 What’s wrong with this implementation?



Software Spin Locks: v0
void lock(int *lock) { 
  while (*lock) {} // spin 
  *lock = 1; 
}

 Assume the lock is unlocked, and we have two threads 
 Thread A calls lock, and doesn’t spin because *lock = 0 
 Before thread A gets a chance to set *lock to 1, it is context-

switched out 
 Thread B is context-switched in, calls lock(), doesn’t spin because 

*lock = 0, sets *lock to 1, enters the critical section protected by the 
lock, and get context-switched out 

 Thread A is context-switched back in, sets *lock to 1 (which it 
already is!), and enters the critical section 

 We have two threads in the critical section, therefore we don’t have 
mutual execution, therefore our lock() implementation is broken



Software Spin Lock: v0
 There is a race condition in the lock() function on 

the boolean lock variable itself! 
 Ironically, our lock() function is not thread-safe! 
 Adding another lock on the lock would only push the 

problem down one level, and so on... 
 One possible solution could be to used a “turn-

based” system 
 A variable alternates between 0 and 1 
 A value of 0 indicates that Thread #1 should get access 

to the critical section 
 A value of 1 indicates that Thread #2 should get access 

to the critical section 
 Initially the value is (arbitrarily) set to 0 

 Let’s look at the code



Software Spin Lock: v1

 Thread #1 calls the functions passing 0 as an 
argument, and thread #2 calls the functions 
passing 1 as an argument 

 The code above solves the problem of the 
previous implementation 
 The two threads cannot enter the critical section 

because only a single thread can have its id equal 
to the lock 

 What is the problem? 

void unlock(int *lock, int id) { 
  *lock = 1 - id; 
}

void lock(int *lock, int id) { 
  while (*lock != id) {}  // spin 
  *lock = id; 
}



Software Spin Lock: v1

 The problem is starvation 
 Consider the following sequence of locks and unlocks: 
Thread A: lock(0); 
Thread A: unlock(0); 
Thread A: lock(0);     // blocks! 
 Thread A is blocked until Thread B goes into the critical section 

 Thread B may not even do anything for the next hour 
 Threads are forced to alternate in the critical section 

 Because it’s turn-based 
 This goes against the principle of “no unnecessary delays”  
 Let’s look at another idea...

void unlock(int *lock, int id) { 
  *lock = 1 - id; 
}

void lock(int *lock, int id) { 
  while (*lock != id) {}  // spin 
  *lock = id; 
}



Software Spin Lock: v2

 Use two variables inside the lock: 
	 	 typedef struct { 
	 	      boolean flag[2];   // initialized to {false, false} 
	 	 } *lock_t; 

 The idea: when a thread wants to acquire the lock, it 
looks at whether the other thread has it 

 This avoids the “forced alternation” problem of the 
previous solution 

 But is it correct?  Anybody?

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  while (lock->flag[1-id] == true) {} // spin 
  lock->flag[id] = true; 
}



Software Spin Lock: v2

 Incorrect, for the same reason as v0 was broken: race 
condition! 

 The two threads enter lock() “at the same time” 
 They both see the other’s flag set to false and proceed 
 We now have two threads in the critical section! 

 This is a very typical problem 
 You cannot test for a condition and then take action based 

on the test in a way that is atomic 
 We saw this a few times already 

 More plainly: if (cond) {  do_something; }   is not atomic 
 Let’s look at yet another idea....

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  while (lock->flag[1-id] == true) {} // spin  
  lock->flag[id] = true; 
}



Software Spin Lock: v3

 To fix the problem we swap the two statements in function lock() 
 The idea is to right away (atomically) say “I want to enter the 

critical section”  by setting lock->flag[id] 
 There is no interleaving of the executions that can lead to both 

threads entering the critical section simultaneously 

lock->flag[0] = true;	 	        lock->flag[1] = true; 
while(lock->flag[1] == true) yield();       while(lock->flag[0] == true) yield(); 
. . .	      	 	 	        . . . 
lock->flag[0] = false;	 	        lock->flag[1] = false; 

 But now we have a new problem...

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) {} // spin 
}



Software Spin Lock: v3

 Deadlock! 
 Both threads set their variables to true “at the same time” 

 Thread #1 sets his to true 
 Context-switch 
 Thread #2 sets his to true 
 And at this point both threads spin forever 

 Again, unlikely but possible 
 Remember that we consider the OS scheduler as an 

adversary 
 Let’s look at yet another idea…

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) {} // spin 
}



Software Spin Lock: v4

 The idea here is to fix the problem from v3 by having 
threads back off when they realize they’re both 
entering the function at the same time 

 If the other’s flag is set to true, I set mine to false, let the 
other run for a while (which should happen due to OS 
scheduling), and set mine to true again and check on the 
other’s flag 

 There is STILL a problem here!  (really unlikely)

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) { // spin 
      lock->flag[id] = false; 
      lock->flag[id] = true; 
  } 
}



Software Spin Lock: v4

 The problem is livelock! 
 A kind of deadlock in which threads are in an infinite (or very long) 

sequence of blocking and unblocking, like people in a hallway 
 Threads could be in locked step  

 They both set their flags to true 
 They both set their flags to false 
  Repeat . . . 

 With false concurrency, this is virtually impossible (but probability ≠ 0) 
 With true concurrency, the livelock is  a bit likelier 

 Let’s look at another idea…

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) { // spin 
      lock->flag[id] = false; 
      lock->flag[id] = true; 
  } 
}



Software Spin Lock: v5

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
  lock->turn = 1-id; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) { 
    if (lock->turn != id) { 
       lock->flag[id] = false; 
       while (lock->turn != id) {} // spin 
       lock->flag[id] = true; 
    } 
  } 
} We add a “turn” variable 	 	 	 	 	         

to the lock structure 
	 typedef struct { 
	   boolean flag[2]; 
	   int turn; 
	 } *lock_t; 
 The threads take turns backing off 
 This is a very good solution  [Dekker, 1960’s] 

 But it does allow starvation in some situations



Software Spin Lock: v6

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  lock->last = id; 
  while (lock->flag[1-id] == true && lock->last == id) {} // spin 
}

 In 1981 Peterson came up with a complete and simpler solution: 
	 	 typedef struct { 
	 	     boolean flag[2]; 
	 	     int last; 
	 	 } *lock_t; 

 The last field tracks which thread last tried to enter the CS 
 This is the thread that is delayed if both threads compete 

 Removes the starvation problem of v5



Software Locks: Bottomline
 Producing a good solution requires a lot of thought 
 Thanks to Peterson we have one 

 Formally proving that it is a correct solution is not easy 
 But in this course we don’t touch theory 

 Just know that detecting race conditions, deadlocks and 
starvations by analyzing code is NP-hard 

 But what about more than 2 threads? 
 Turns out things get much more complicated but doable 
 The bakery algorithm (by Lamport) 

 Analogous to a bakery with a machine dispensing tickets to 
customers 

 Cleverly designed to avoid all the problems we have seen 
with v1, v2, v3, v4, and v5 

 Accommodates an arbitrary number of threads



Asking the Hardware for Help
 The software solutions are interesting 

 Especially because the same principles and reasoning 
applies when writing concurrent applications that use locks 

 You’re not expected to remember these solutions in this 
course 

 But we will do similar analyses of user-level code for 
correctness (good luck everyone!) 

 But they can be time/memory consuming 
 lock() has quite a few instructions 
 lock_t has quite a few bytes 

 Common trend in the history of computing: hardware 
solutions are simpler and faster than software solutions 

 e.g., hardware floating point, virtualization hardware support



Atomic instructions
 Let’s look at our first naive implementation

void lock(int *lock) { 
    while (*lock) {}   // spin 
    *lock = 1; 
}

 The assembly in RISC-like x86 assembly:	  
	 spin:	 mov R1, [lock]  	// Load lock 
	 	 	 cmp R1, 0   	 // compare to 0 
	 	 	 jnz  spin	 // if not 0, loop 
	 	 	 mov [lock], 1	 // set lock to 0 
 Therefore, between the loading, the testing and the setting the 

value may have changed, because a sequence of instructions 
is not atomic 

 We need an atomic “test and act” instruction!



Compare-and-Swap Instruction
 Most processors provide atomic instructions that do 

multiple things at once 
 One such instruction is Compare and Swap (CAS) 
 CAS(location, old, new) does atomically: 

 if [location] == old, then [location] = new;  
 return true if value was changed; 

 You could think of this implemented in hardware by 
locking the memory bus so that no other memory access 
can occur in between the load, the test, and store 

 That is, the content of memory cannot be changed by another 
thread while a thread is doing a CAS 

 In reality, the implementation is a bit more clever and 
leverages “cache coherency protocols”, so that not all memory 
operations are blocked



Spinlock with CAS
 With the CAS instruction, one can then write the 

pseudo-code for lock(): 
	 	 while (CAS(lock, 0 , 1) == false) { } 

 In words: if the lock is set to 0 then set it to 1 and 
break from the loop, otherwise try again 

 Fixes our first, simplest implementation with the help 
of the hardware 
 It only works because CAS is atomic 

 And it’s really fast!



Spinning?
 In everything we’ve talked about so far, our implementation 

of the lock() function “spins” in loop 
 That’s why our lock is called a spinlock 
 Spinning is good because one gets the lock as soon as it is 

released 
 But since it’s always a good idea to have short critical 

sections, then spinning isn’t bad since no thread will spin for 
a long time 

 If the critical section were to be long the threads will spin 
for a log time, wasting of CPU cycles (and power / heat) 

 Think of a bathroom analogy again: if the person in there 
will be there for an hour, it’s wasteful to stay by the door 
and keep trying to turn the handle! 

 So we’re all good and don’t need anything else?



Spinning is Bad?
 Unfortunately, critical sections cannot 

always be made short 
 e.g., they involve some network 

operation, some I/O operation 
 We really, really don’t want to spin for a long 

time due to waste of CPU cycles 

 And so, this is why we have Blocking Locks 
 You should have seen them in ICS332



Blocking Locks (Mutexes)
 A radically different option in which the OS is involved 
 The lock() function is modified so that if the lock is taken, 

instead of spinning, the thread is put to “sleep” by the OS 
 More precisely, the thread is removed from the ready queue 

and put in a queue associated to the lock 
 When the lock is released via unlock(), the OS puts the 

thread back into the ready queue 
 The thread will eventually re-attempt to acquire the lock and 

may get it, or will be put back to sleep 
 If the critical section is short, a blocking lock has very high 

overhead 
 Essentially, a system call + context-switch is involved when you 

could have instead been spinning for only a few cycles 
 But, if the lock is taken for a long time, then no CPU cycles 

are wasted spinning



Spinlock vs. Blocking Locks

short critical 
section

long critical 
section

spinlocks ✔
many wasted 
CPU cycles

blocking locks high overhead ✔

 Both types of locks are available on most 
systems



Choosing?
 Sometimes the duration of a critical section is clear: 

 add 1 to a counter: short -> use a spinlock 
 update a database: long -> use a blocking lock 

 But in many cases it’s not easy to tell 
 For this reason, most systems provide hybrid locks 

 First behaves like a spinlock 
 If spinning too long, then behaves like a blocking lock 
 Plus other custom behaviors that aim to strike a good compromise 

between CPU waste and responsiveness 
 Typically, it’s a great idea to use the provided hybrid locks 

 What Java provides by default,  pthread_mutex_t  in C/
Pthreads, ... 

 For instance, one some systems, even with short “x++” 
critical sections, I’ve found hybrid locks to be better than 
spinlocks in terms of performance!



Recap

Spinlocks
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Recap

Spinlocks

software

➡Complicated, but solved by smart 
people decades ago 

➡Not efficient in terms of CPU and RAM 
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software hardware



Recap

Spinlocks

software hardware

➡ Easy once processors provided atomic 
“compare and swap” instructions 

➡ Efficient in terms of CPU and RAM



Recap

software hardware

➡ The Good: one gets the lock 
as soon as it becomes 
available 

➡ The Bad: while waiting for 
the lock to become available 
one wastes CPU cycles

Spinlocks



Recap

software hardware

Spinlocks Blocking 
locks



Recap

software hardware

Spinlocks Blocking 
locks

➡ Instead of spinning, the 
thread is put to sleep by 
the OS and re-awakened 
when the lock becomes 
available



Recap

software hardware

Spinlocks Blocking 
locks

➡ The Good: no waste of 
CPU cycles while a thread 
is sleeping 

➡ The Bad: high overhead



Recap

software hardware

Spinlocks Blocking 
locks

Hybrid 
locks



Recap

software hardware

Spinlocks Blocking 
locks

Hybrid 
locks

➡ Adaptive locks that spin and/or 
block threads to achieve a good 
compromise between overhead 
and responsiveness



Recap

software hardware

Spinlocks Blocking 
locks

Hybrid 
locks

➡ A blocking lock is sometimes 
called “mutex” 

(due to the Pthread API in C…)



A real-life metaphor
 You’re a thread and you are in a coffee shop with a single 

bathroom, and many other threads 
 Spinlock:  

 I go to the bathroom, I wait in line, when I get first in line I keep 
turning the handle until it opens and get in immediately(-ish) 

 Blocking lock 
 I go to the bathroom, I see it’s busy, I go to the barista and say 

“Can you come get me when the bathroom is free” and I go back 
to my table where I take a nap. Later, the barista comes by and 
tells me I can go in the bathroom (provided nobody got in there 
in the meantime… more on this later) 

 Hybrid lock 
 I go to the bathroom, try the “spinlock” thing for 5 seconds in 

case I am lucky and the person inside is just about to finish. 
After 5 seconds I give up and try the “blocking lock” thing



Conclusion
 Locks are used to create critical sections 
 Three kinds of locks 

 Spinlock 
 Blocking locks 
 Hybrid locks 

 These locks ALL do the same things, but 
achieve different levels of responsiveness and 
CPU cycle consumption 

 Different locks are good for different critical 
section lengths 

 In practice, systems provide good hybrid locks 
that most users use 

 Onward to what Java does!


