
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Locks:
Implementation

Implementing Lock?
 At this point we know how to use lock() and

unlock() to create critical sections
 Question: how does one implement lock()?

 Granted, you will probably never need to as languages/
systems provide them

 But it’s interesting to have some idea of how things work
 And it will be our first attempt at truly reasoning

about concurrency
 The first natural attempt is to try to implement

lock() and unlock() in software, like any other
method/function

 Following the pseudo-code in the previous set of lecture
notes

Spinlocks
 We’ll use the following basic idea
 A lock will be a boolean variable, initially set to 0

 0 means: nobody “has the lock”, i.e., no thread is in the
critical section defined by the lock

 lock():
 While lock == 1, keep testing until the lock is == 0
 When lock == 0, then set the lock to 1

 So that other threads can’t get in

 unlock()
 set lock to 0

 This is called spinning because if a thread is already
in the critical section, another will keep testing the
lock over and over

Assumptions
 To simplify we’ll assume

 A single core (false concurrency)
 An OS with a scheduler that does some type of round-

robin scheduling (time-slicing via context-switching)
 We’re going to go through a series of implementations

 Re-tracing the history of “software spinlocks"
 We’ll analyze each implementation for correctness
 We assume that the OS scheduler is an adversary

 It tries to place context-switches inconveniently so as to
break correctness

 If there is one case, no matter how unlikely, in which
the execution is incorrect, then we declare the code
broken

Software Spin Locks: v0
 The simplest (but wrong) possible implementation

void unlock(int *lock) {
 *lock = 0;
}

void lock(int *lock) {
 while (*lock) {} // spin
 *lock = 1;
}

 What’s wrong with this implementation?

Software Spin Locks: v0
void lock(int *lock) {
 while (*lock) {} // spin
 *lock = 1;
}

 Assume the lock is unlocked, and we have two threads
 Thread A calls lock, and doesn’t spin because *lock = 0
 Before thread A gets a chance to set *lock to 1, it is context-

switched out
 Thread B is context-switched in, calls lock(), doesn’t spin because

*lock = 0, sets *lock to 1, enters the critical section protected by the
lock, and get context-switched out

 Thread A is context-switched back in, sets *lock to 1 (which it
already is!), and enters the critical section

 We have two threads in the critical section, therefore we don’t have
mutual execution, therefore our lock() implementation is broken

Software Spin Lock: v0
 There is a race condition in the lock() function on

the boolean lock variable itself!
 Ironically, our lock() function is not thread-safe!
 Adding another lock on the lock would only push the

problem down one level, and so on...
 One possible solution could be to used a “turn-

based” system
 A variable alternates between 0 and 1
 A value of 0 indicates that Thread #1 should get access

to the critical section
 A value of 1 indicates that Thread #2 should get access

to the critical section
 Initially the value is (arbitrarily) set to 0

 Let’s look at the code

Software Spin Lock: v1

 Thread #1 calls the functions passing 0 as an
argument, and thread #2 calls the functions
passing 1 as an argument

 The code above solves the problem of the
previous implementation
 The two threads cannot enter the critical section

because only a single thread can have its id equal
to the lock

 What is the problem?

void unlock(int *lock, int id) {
 *lock = 1 - id;
}

void lock(int *lock, int id) {
 while (*lock != id) {} // spin
 *lock = id;
}

Software Spin Lock: v1

 The problem is starvation
 Consider the following sequence of locks and unlocks:
Thread A: lock(0);
Thread A: unlock(0);
Thread A: lock(0); // blocks!
 Thread A is blocked until Thread B goes into the critical section

 Thread B may not even do anything for the next hour
 Threads are forced to alternate in the critical section

 Because it’s turn-based
 This goes against the principle of “no unnecessary delays”
 Let’s look at another idea...

void unlock(int *lock, int id) {
 *lock = 1 - id;
}

void lock(int *lock, int id) {
 while (*lock != id) {} // spin
 *lock = id;
}

Software Spin Lock: v2

 Use two variables inside the lock:
 typedef struct {
 boolean flag[2]; // initialized to {false, false}
 } *lock_t;

 The idea: when a thread wants to acquire the lock, it
looks at whether the other thread has it

 This avoids the “forced alternation” problem of the
previous solution

 But is it correct? Anybody?

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 while (lock->flag[1-id] == true) {} // spin
 lock->flag[id] = true;
}

Software Spin Lock: v2

 Incorrect, for the same reason as v0 was broken: race
condition!

 The two threads enter lock() “at the same time”
 They both see the other’s flag set to false and proceed
 We now have two threads in the critical section!

 This is a very typical problem
 You cannot test for a condition and then take action based

on the test in a way that is atomic
 We saw this a few times already

 More plainly: if (cond) { do_something; } is not atomic
 Let’s look at yet another idea....

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 while (lock->flag[1-id] == true) {} // spin
 lock->flag[id] = true;
}

Software Spin Lock: v3

 To fix the problem we swap the two statements in function lock()
 The idea is to right away (atomically) say “I want to enter the

critical section” by setting lock->flag[id]
 There is no interleaving of the executions that can lead to both

threads entering the critical section simultaneously

lock->flag[0] = true; lock->flag[1] = true;
while(lock->flag[1] == true) yield(); while(lock->flag[0] == true) yield();
.
lock->flag[0] = false; lock->flag[1] = false;

 But now we have a new problem...

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) {} // spin
}

Software Spin Lock: v3

 Deadlock!
 Both threads set their variables to true “at the same time”

 Thread #1 sets his to true
 Context-switch
 Thread #2 sets his to true
 And at this point both threads spin forever

 Again, unlikely but possible
 Remember that we consider the OS scheduler as an

adversary
 Let’s look at yet another idea…

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) {} // spin
}

Software Spin Lock: v4

 The idea here is to fix the problem from v3 by having
threads back off when they realize they’re both
entering the function at the same time

 If the other’s flag is set to true, I set mine to false, let the
other run for a while (which should happen due to OS
scheduling), and set mine to true again and check on the
other’s flag

 There is STILL a problem here! (really unlikely)

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) { // spin
 lock->flag[id] = false;
 lock->flag[id] = true;
 }
}

Software Spin Lock: v4

 The problem is livelock!
 A kind of deadlock in which threads are in an infinite (or very long)

sequence of blocking and unblocking, like people in a hallway
 Threads could be in locked step

 They both set their flags to true
 They both set their flags to false
 Repeat . . .

 With false concurrency, this is virtually impossible (but probability ≠ 0)
 With true concurrency, the livelock is a bit likelier

 Let’s look at another idea…

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) { // spin
 lock->flag[id] = false;
 lock->flag[id] = true;
 }
}

Software Spin Lock: v5

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
 lock->turn = 1-id;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) {
 if (lock->turn != id) {
 lock->flag[id] = false;
 while (lock->turn != id) {} // spin
 lock->flag[id] = true;
 }
 }
} We add a “turn” variable

to the lock structure
 typedef struct {
 boolean flag[2];
 int turn;
 } *lock_t;
 The threads take turns backing off
 This is a very good solution [Dekker, 1960’s]

 But it does allow starvation in some situations

Software Spin Lock: v6

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 lock->last = id;
 while (lock->flag[1-id] == true && lock->last == id) {} // spin
}

 In 1981 Peterson came up with a complete and simpler solution:
 typedef struct {
 boolean flag[2];
 int last;
 } *lock_t;

 The last field tracks which thread last tried to enter the CS
 This is the thread that is delayed if both threads compete

 Removes the starvation problem of v5

Software Locks: Bottomline
 Producing a good solution requires a lot of thought
 Thanks to Peterson we have one

 Formally proving that it is a correct solution is not easy
 But in this course we don’t touch theory

 Just know that detecting race conditions, deadlocks and
starvations by analyzing code is NP-hard

 But what about more than 2 threads?
 Turns out things get much more complicated but doable
 The bakery algorithm (by Lamport)

 Analogous to a bakery with a machine dispensing tickets to
customers

 Cleverly designed to avoid all the problems we have seen
with v1, v2, v3, v4, and v5

 Accommodates an arbitrary number of threads

Asking the Hardware for Help
 The software solutions are interesting

 Especially because the same principles and reasoning
applies when writing concurrent applications that use locks

 You’re not expected to remember these solutions in this
course

 But we will do similar analyses of user-level code for
correctness (good luck everyone!)

 But they can be time/memory consuming
 lock() has quite a few instructions
 lock_t has quite a few bytes

 Common trend in the history of computing: hardware
solutions are simpler and faster than software solutions

 e.g., hardware floating point, virtualization hardware support

Atomic instructions
 Let’s look at our first naive implementation

void lock(int *lock) {
 while (*lock) {} // spin
 *lock = 1;
}

 The assembly in RISC-like x86 assembly:
 spin: mov R1, [lock] // Load lock
 cmp R1, 0 // compare to 0
 jnz spin // if not 0, loop
 mov [lock], 1 // set lock to 0
 Therefore, between the loading, the testing and the setting the

value may have changed, because a sequence of instructions
is not atomic

 We need an atomic “test and act” instruction!

Compare-and-Swap Instruction
 Most processors provide atomic instructions that do

multiple things at once
 One such instruction is Compare and Swap (CAS)
 CAS(location, old, new) does atomically:

 if [location] == old, then [location] = new;
 return true if value was changed;

 You could think of this implemented in hardware by
locking the memory bus so that no other memory access
can occur in between the load, the test, and store

 That is, the content of memory cannot be changed by another
thread while a thread is doing a CAS

 In reality, the implementation is a bit more clever and
leverages “cache coherency protocols”, so that not all memory
operations are blocked

Spinlock with CAS
 With the CAS instruction, one can then write the

pseudo-code for lock():
 while (CAS(lock, 0 , 1) == false) { }

 In words: if the lock is set to 0 then set it to 1 and
break from the loop, otherwise try again

 Fixes our first, simplest implementation with the help
of the hardware
 It only works because CAS is atomic

 And it’s really fast!

Spinning?
 In everything we’ve talked about so far, our implementation

of the lock() function “spins” in loop
 That’s why our lock is called a spinlock
 Spinning is good because one gets the lock as soon as it is

released
 But since it’s always a good idea to have short critical

sections, then spinning isn’t bad since no thread will spin for
a long time

 If the critical section were to be long the threads will spin
for a log time, wasting of CPU cycles (and power / heat)

 Think of a bathroom analogy again: if the person in there
will be there for an hour, it’s wasteful to stay by the door
and keep trying to turn the handle!

 So we’re all good and don’t need anything else?

Spinning is Bad?
 Unfortunately, critical sections cannot

always be made short
 e.g., they involve some network

operation, some I/O operation
 We really, really don’t want to spin for a long

time due to waste of CPU cycles

 And so, this is why we have Blocking Locks
 You should have seen them in ICS332

Blocking Locks (Mutexes)
 A radically different option in which the OS is involved
 The lock() function is modified so that if the lock is taken,

instead of spinning, the thread is put to “sleep” by the OS
 More precisely, the thread is removed from the ready queue

and put in a queue associated to the lock
 When the lock is released via unlock(), the OS puts the

thread back into the ready queue
 The thread will eventually re-attempt to acquire the lock and

may get it, or will be put back to sleep
 If the critical section is short, a blocking lock has very high

overhead
 Essentially, a system call + context-switch is involved when you

could have instead been spinning for only a few cycles
 But, if the lock is taken for a long time, then no CPU cycles

are wasted spinning

Spinlock vs. Blocking Locks

short critical
section

long critical
section

spinlocks ✔
many wasted
CPU cycles

blocking locks high overhead ✔

 Both types of locks are available on most
systems

Choosing?
 Sometimes the duration of a critical section is clear:

 add 1 to a counter: short -> use a spinlock
 update a database: long -> use a blocking lock

 But in many cases it’s not easy to tell
 For this reason, most systems provide hybrid locks

 First behaves like a spinlock
 If spinning too long, then behaves like a blocking lock
 Plus other custom behaviors that aim to strike a good compromise

between CPU waste and responsiveness
 Typically, it’s a great idea to use the provided hybrid locks

 What Java provides by default, pthread_mutex_t in C/
Pthreads, ...

 For instance, one some systems, even with short “x++”
critical sections, I’ve found hybrid locks to be better than
spinlocks in terms of performance!

Recap

Spinlocks

Recap

Spinlocks

software

Recap

Spinlocks

software

➡Complicated, but solved by smart
people decades ago

➡Not efficient in terms of CPU and RAM

Recap

Spinlocks

software hardware

Recap

Spinlocks

software hardware

➡ Easy once processors provided atomic
“compare and swap” instructions

➡ Efficient in terms of CPU and RAM

Recap

software hardware

➡ The Good: one gets the lock
as soon as it becomes
available

➡ The Bad: while waiting for
the lock to become available
one wastes CPU cycles

Spinlocks

Recap

software hardware

Spinlocks Blocking
locks

Recap

software hardware

Spinlocks Blocking
locks

➡ Instead of spinning, the
thread is put to sleep by
the OS and re-awakened
when the lock becomes
available

Recap

software hardware

Spinlocks Blocking
locks

➡ The Good: no waste of
CPU cycles while a thread
is sleeping

➡ The Bad: high overhead

Recap

software hardware

Spinlocks Blocking
locks

Hybrid
locks

Recap

software hardware

Spinlocks Blocking
locks

Hybrid
locks

➡ Adaptive locks that spin and/or
block threads to achieve a good
compromise between overhead
and responsiveness

Recap

software hardware

Spinlocks Blocking
locks

Hybrid
locks

➡ A blocking lock is sometimes
called “mutex”

(due to the Pthread API in C…)

A real-life metaphor
 You’re a thread and you are in a coffee shop with a single

bathroom, and many other threads
 Spinlock:

 I go to the bathroom, I wait in line, when I get first in line I keep
turning the handle until it opens and get in immediately(-ish)

 Blocking lock
 I go to the bathroom, I see it’s busy, I go to the barista and say

“Can you come get me when the bathroom is free” and I go back
to my table where I take a nap. Later, the barista comes by and
tells me I can go in the bathroom (provided nobody got in there
in the meantime… more on this later)

 Hybrid lock
 I go to the bathroom, try the “spinlock” thing for 5 seconds in

case I am lucky and the person inside is just about to finish.
After 5 seconds I give up and try the “blocking lock” thing

Conclusion
 Locks are used to create critical sections
 Three kinds of locks

 Spinlock
 Blocking locks
 Hybrid locks

 These locks ALL do the same things, but
achieve different levels of responsiveness and
CPU cycle consumption

 Different locks are good for different critical
section lengths

 In practice, systems provide good hybrid locks
that most users use

 Onward to what Java does!

