
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Locks:
Implementation

Implementing Lock?
 At this point we know how to use lock() and

unlock() to create critical sections
 Question: how does one implement lock()?

 Granted, you will probably never need to as languages/
systems provide them

 But it’s interesting to have some idea of how things work
 And it will be our first attempt at truly reasoning

about concurrency
 The first natural attempt is to try to implement

lock() and unlock() in software, like any other
method/function

 Following the pseudo-code in the previous set of lecture
notes

Spinlocks
 We’ll use the following basic idea
 A lock will be a boolean variable, initially set to 0

 0 means: nobody “has the lock”, i.e., no thread is in the
critical section defined by the lock

 lock():
 While lock == 1, keep testing until the lock is == 0
 When lock == 0, then set the lock to 1

 So that other threads can’t get in

 unlock()
 set lock to 0

 This is called spinning because if a thread is already
in the critical section, another will keep testing the
lock over and over

Assumptions
 To simplify we’ll assume

 A single core (false concurrency)
 An OS with a scheduler that does some type of round-

robin scheduling (time-slicing via context-switching)
 We’re going to go through a series of implementations

 Re-tracing the history of “software spinlocks"
 We’ll analyze each implementation for correctness
 We assume that the OS scheduler is an adversary

 It tries to place context-switches inconveniently so as to
break correctness

 If there is one case, no matter how unlikely, in which
the execution is incorrect, then we declare the code
broken

Software Spin Locks: v0
 The simplest (but wrong) possible implementation

void unlock(int *lock) {
 *lock = 0;
}

void lock(int *lock) {
 while (*lock) {} // spin
 *lock = 1;
}

 What’s wrong with this implementation?

Software Spin Locks: v0
void lock(int *lock) {
 while (*lock) {} // spin
 *lock = 1;
}

 Assume the lock is unlocked, and we have two threads
 Thread A calls lock, and doesn’t spin because *lock = 0
 Before thread A gets a chance to set *lock to 1, it is context-

switched out
 Thread B is context-switched in, calls lock(), doesn’t spin because

*lock = 0, sets *lock to 1, enters the critical section protected by the
lock, and get context-switched out

 Thread A is context-switched back in, sets *lock to 1 (which it
already is!), and enters the critical section

 We have two threads in the critical section, therefore we don’t have
mutual execution, therefore our lock() implementation is broken

Software Spin Lock: v0
 There is a race condition in the lock() function on

the boolean lock variable itself!
 Ironically, our lock() function is not thread-safe!
 Adding another lock on the lock would only push the

problem down one level, and so on...
 One possible solution could be to used a “turn-

based” system
 A variable alternates between 0 and 1
 A value of 0 indicates that Thread #1 should get access

to the critical section
 A value of 1 indicates that Thread #2 should get access

to the critical section
 Initially the value is (arbitrarily) set to 0

 Let’s look at the code

Software Spin Lock: v1

 Thread #1 calls the functions passing 0 as an
argument, and thread #2 calls the functions
passing 1 as an argument

 The code above solves the problem of the
previous implementation
 The two threads cannot enter the critical section

because only a single thread can have its id equal
to the lock

 What is the problem?

void unlock(int *lock, int id) {
 *lock = 1 - id;
}

void lock(int *lock, int id) {
 while (*lock != id) {} // spin
 *lock = id;
}

Software Spin Lock: v1

 The problem is starvation
 Consider the following sequence of locks and unlocks:
Thread A: lock(0);
Thread A: unlock(0);
Thread A: lock(0); // blocks!
 Thread A is blocked until Thread B goes into the critical section

 Thread B may not even do anything for the next hour
 Threads are forced to alternate in the critical section

 Because it’s turn-based
 This goes against the principle of “no unnecessary delays”
 Let’s look at another idea...

void unlock(int *lock, int id) {
 *lock = 1 - id;
}

void lock(int *lock, int id) {
 while (*lock != id) {} // spin
 *lock = id;
}

Software Spin Lock: v2

 Use two variables inside the lock:
	 	 typedef struct {
	 	 boolean flag[2]; // initialized to {false, false}
	 	 } *lock_t;

 The idea: when a thread wants to acquire the lock, it
looks at whether the other thread has it

 This avoids the “forced alternation” problem of the
previous solution

 But is it correct? Anybody?

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 while (lock->flag[1-id] == true) {} // spin
 lock->flag[id] = true;
}

Software Spin Lock: v2

 Incorrect, for the same reason as v0 was broken: race
condition!

 The two threads enter lock() “at the same time”
 They both see the other’s flag set to false and proceed
 We now have two threads in the critical section!

 This is a very typical problem
 You cannot test for a condition and then take action based

on the test in a way that is atomic
 We saw this a few times already

 More plainly: if (cond) { do_something; } is not atomic
 Let’s look at yet another idea....

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 while (lock->flag[1-id] == true) {} // spin
 lock->flag[id] = true;
}

Software Spin Lock: v3

 To fix the problem we swap the two statements in function lock()
 The idea is to right away (atomically) say “I want to enter the

critical section” by setting lock->flag[id]
 There is no interleaving of the executions that can lead to both

threads entering the critical section simultaneously

lock->flag[0] = true;	 	 lock->flag[1] = true;
while(lock->flag[1] == true) yield(); while(lock->flag[0] == true) yield();
.
lock->flag[0] = false;	 	 lock->flag[1] = false;

 But now we have a new problem...

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) {} // spin
}

Software Spin Lock: v3

 Deadlock!
 Both threads set their variables to true “at the same time”

 Thread #1 sets his to true
 Context-switch
 Thread #2 sets his to true
 And at this point both threads spin forever

 Again, unlikely but possible
 Remember that we consider the OS scheduler as an

adversary
 Let’s look at yet another idea…

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) {} // spin
}

Software Spin Lock: v4

 The idea here is to fix the problem from v3 by having
threads back off when they realize they’re both
entering the function at the same time

 If the other’s flag is set to true, I set mine to false, let the
other run for a while (which should happen due to OS
scheduling), and set mine to true again and check on the
other’s flag

 There is STILL a problem here! (really unlikely)

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) { // spin
 lock->flag[id] = false;
 lock->flag[id] = true;
 }
}

Software Spin Lock: v4

 The problem is livelock!
 A kind of deadlock in which threads are in an infinite (or very long)

sequence of blocking and unblocking, like people in a hallway
 Threads could be in locked step

 They both set their flags to true
 They both set their flags to false
 Repeat . . .

 With false concurrency, this is virtually impossible (but probability ≠ 0)
 With true concurrency, the livelock is a bit likelier

 Let’s look at another idea…

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) { // spin
 lock->flag[id] = false;
 lock->flag[id] = true;
 }
}

Software Spin Lock: v5

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
 lock->turn = 1-id;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 while (lock->flag[1-id] == true) {
 if (lock->turn != id) {
 lock->flag[id] = false;
 while (lock->turn != id) {} // spin
 lock->flag[id] = true;
 }
 }
} We add a “turn” variable 	 	 	 	 	

to the lock structure
	 typedef struct {
	 boolean flag[2];
	 int turn;
	 } *lock_t;
 The threads take turns backing off
 This is a very good solution [Dekker, 1960’s]

 But it does allow starvation in some situations

Software Spin Lock: v6

void unlock(lock_t lock, int id) {
 lock->flag[id] = false;
}

void lock(lock_t lock, int id) {
 lock->flag[id] = true;
 lock->last = id;
 while (lock->flag[1-id] == true && lock->last == id) {} // spin
}

 In 1981 Peterson came up with a complete and simpler solution:
	 	 typedef struct {
	 	 boolean flag[2];
	 	 int last;
	 	 } *lock_t;

 The last field tracks which thread last tried to enter the CS
 This is the thread that is delayed if both threads compete

 Removes the starvation problem of v5

Software Locks: Bottomline
 Producing a good solution requires a lot of thought
 Thanks to Peterson we have one

 Formally proving that it is a correct solution is not easy
 But in this course we don’t touch theory

 Just know that detecting race conditions, deadlocks and
starvations by analyzing code is NP-hard

 But what about more than 2 threads?
 Turns out things get much more complicated but doable
 The bakery algorithm (by Lamport)

 Analogous to a bakery with a machine dispensing tickets to
customers

 Cleverly designed to avoid all the problems we have seen
with v1, v2, v3, v4, and v5

 Accommodates an arbitrary number of threads

Asking the Hardware for Help
 The software solutions are interesting

 Especially because the same principles and reasoning
applies when writing concurrent applications that use locks

 You’re not expected to remember these solutions in this
course

 But we will do similar analyses of user-level code for
correctness (good luck everyone!)

 But they can be time/memory consuming
 lock() has quite a few instructions
 lock_t has quite a few bytes

 Common trend in the history of computing: hardware
solutions are simpler and faster than software solutions

 e.g., hardware floating point, virtualization hardware support

Atomic instructions
 Let’s look at our first naive implementation

void lock(int *lock) {
 while (*lock) {} // spin
 *lock = 1;
}

 The assembly in RISC-like x86 assembly:	
	 spin:	 mov R1, [lock] 	// Load lock
	 	 	 cmp R1, 0 	 // compare to 0
	 	 	 jnz spin	 // if not 0, loop
	 	 	 mov [lock], 1	 // set lock to 0
 Therefore, between the loading, the testing and the setting the

value may have changed, because a sequence of instructions
is not atomic

 We need an atomic “test and act” instruction!

Compare-and-Swap Instruction
 Most processors provide atomic instructions that do

multiple things at once
 One such instruction is Compare and Swap (CAS)
 CAS(location, old, new) does atomically:

 if [location] == old, then [location] = new;
 return true if value was changed;

 You could think of this implemented in hardware by
locking the memory bus so that no other memory access
can occur in between the load, the test, and store

 That is, the content of memory cannot be changed by another
thread while a thread is doing a CAS

 In reality, the implementation is a bit more clever and
leverages “cache coherency protocols”, so that not all memory
operations are blocked

Spinlock with CAS
 With the CAS instruction, one can then write the

pseudo-code for lock():
	 	 while (CAS(lock, 0 , 1) == false) { }

 In words: if the lock is set to 0 then set it to 1 and
break from the loop, otherwise try again

 Fixes our first, simplest implementation with the help
of the hardware
 It only works because CAS is atomic

 And it’s really fast!

Spinning?
 In everything we’ve talked about so far, our implementation

of the lock() function “spins” in loop
 That’s why our lock is called a spinlock
 Spinning is good because one gets the lock as soon as it is

released
 But since it’s always a good idea to have short critical

sections, then spinning isn’t bad since no thread will spin for
a long time

 If the critical section were to be long the threads will spin
for a log time, wasting of CPU cycles (and power / heat)

 Think of a bathroom analogy again: if the person in there
will be there for an hour, it’s wasteful to stay by the door
and keep trying to turn the handle!

 So we’re all good and don’t need anything else?

Spinning is Bad?
 Unfortunately, critical sections cannot

always be made short
 e.g., they involve some network

operation, some I/O operation
 We really, really don’t want to spin for a long

time due to waste of CPU cycles

 And so, this is why we have Blocking Locks
 You should have seen them in ICS332

Blocking Locks (Mutexes)
 A radically different option in which the OS is involved
 The lock() function is modified so that if the lock is taken,

instead of spinning, the thread is put to “sleep” by the OS
 More precisely, the thread is removed from the ready queue

and put in a queue associated to the lock
 When the lock is released via unlock(), the OS puts the

thread back into the ready queue
 The thread will eventually re-attempt to acquire the lock and

may get it, or will be put back to sleep
 If the critical section is short, a blocking lock has very high

overhead
 Essentially, a system call + context-switch is involved when you

could have instead been spinning for only a few cycles
 But, if the lock is taken for a long time, then no CPU cycles

are wasted spinning

Spinlock vs. Blocking Locks

short critical
section

long critical
section

spinlocks ✔
many wasted
CPU cycles

blocking locks high overhead ✔

 Both types of locks are available on most
systems

Choosing?
 Sometimes the duration of a critical section is clear:

 add 1 to a counter: short -> use a spinlock
 update a database: long -> use a blocking lock

 But in many cases it’s not easy to tell
 For this reason, most systems provide hybrid locks

 First behaves like a spinlock
 If spinning too long, then behaves like a blocking lock
 Plus other custom behaviors that aim to strike a good compromise

between CPU waste and responsiveness
 Typically, it’s a great idea to use the provided hybrid locks

 What Java provides by default, pthread_mutex_t in C/
Pthreads, ...

 For instance, one some systems, even with short “x++”
critical sections, I’ve found hybrid locks to be better than
spinlocks in terms of performance!

Recap

Spinlocks

Recap

Spinlocks

software

Recap

Spinlocks

software

➡Complicated, but solved by smart
people decades ago

➡Not efficient in terms of CPU and RAM

Recap

Spinlocks

software hardware

Recap

Spinlocks

software hardware

➡ Easy once processors provided atomic
“compare and swap” instructions

➡ Efficient in terms of CPU and RAM

Recap

software hardware

➡ The Good: one gets the lock
as soon as it becomes
available

➡ The Bad: while waiting for
the lock to become available
one wastes CPU cycles

Spinlocks

Recap

software hardware

Spinlocks Blocking
locks

Recap

software hardware

Spinlocks Blocking
locks

➡ Instead of spinning, the
thread is put to sleep by
the OS and re-awakened
when the lock becomes
available

Recap

software hardware

Spinlocks Blocking
locks

➡ The Good: no waste of
CPU cycles while a thread
is sleeping

➡ The Bad: high overhead

Recap

software hardware

Spinlocks Blocking
locks

Hybrid
locks

Recap

software hardware

Spinlocks Blocking
locks

Hybrid
locks

➡ Adaptive locks that spin and/or
block threads to achieve a good
compromise between overhead
and responsiveness

Recap

software hardware

Spinlocks Blocking
locks

Hybrid
locks

➡ A blocking lock is sometimes
called “mutex”

(due to the Pthread API in C…)

A real-life metaphor
 You’re a thread and you are in a coffee shop with a single

bathroom, and many other threads
 Spinlock:

 I go to the bathroom, I wait in line, when I get first in line I keep
turning the handle until it opens and get in immediately(-ish)

 Blocking lock
 I go to the bathroom, I see it’s busy, I go to the barista and say

“Can you come get me when the bathroom is free” and I go back
to my table where I take a nap. Later, the barista comes by and
tells me I can go in the bathroom (provided nobody got in there
in the meantime… more on this later)

 Hybrid lock
 I go to the bathroom, try the “spinlock” thing for 5 seconds in

case I am lucky and the person inside is just about to finish.
After 5 seconds I give up and try the “blocking lock” thing

Conclusion
 Locks are used to create critical sections
 Three kinds of locks

 Spinlock
 Blocking locks
 Hybrid locks

 These locks ALL do the same things, but
achieve different levels of responsiveness and
CPU cycle consumption

 Different locks are good for different critical
section lengths

 In practice, systems provide good hybrid locks
that most users use

 Onward to what Java does!

