Locks:

Implementation

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

"
Implementing Lock?

m At this point we know how to use lock() and
unlock() to create critical sections

® Question: how does one implement lock()?

Granted, you will probably never need to as languages/
systems provide them

But it's interesting to have some idea of how things work

And it will be our first attempt at truly reasoning
about concurrency

® The first natural attempt is to try to implement

lock() and unlock() in software, like any other
method/function

Following the pseudo-code in the previous set of lecture
notes

" JE
Spinlocks

m \We'll use the following basic idea

® A lock will be a boolean variable, initially set to O

0 means: nobody “has the lock”, i.e., no thread is in the
critical section defined by the lock

® |ock():
While lock == 1, keep testing until the lock is ==

When lock == 0, then set the lock to 1
® So that other threads can’t get in

® unlock()
set lockto O

B This is called spinning because if a thread is already
In the critical section, another will keep testing the
lock over and over

" JEE
Assumptions

® To simplify we’ll assume
A single core (false concurrency)

An OS with a scheduler that does some type of round-
robin scheduling (time-slicing via context-switching)

® \We're going to go through a series of implementations
Re-tracing the history of “software spinlocks"
m \WWe'll analyze each implementation for correctness

® \We assume that the OS scheduler is an adversary
It tries to place context-switches inconveniently so as to
break correctness
m [f there is one case, no matter how unlikely, in which
the execution is incorrect, then we declare the code
broken

" J———
Software Spin Locks: v0

® The simplest (but wrong) possible implementation

void lock(int *lock) {
while (*lock) {} // spin
*lock = 1;

}

void unlock(int *lock) {
*lock = 0;

}

®m \What's wrong with this implementation”?

" J—_—
Software Spin Locks: v0

void lock(int *lock) {
while (*lock) {} // spin
*lock = 1;

}

m Assume the lock is unlocked, and we have two threads
® Thread A calls lock, and doesn’t spin because *lock = 0

m Before thread A gets a chance to set *lock to 1, it is context-
switched out

® Thread B is context-switched in, calls lock(), doesn’t spin because
*lock = 0, sets *lock to 1, enters the critical section protected by the
lock, and get context-switched out

®m Thread A is context-switched back in, sets *lock to 1 (which it
already is!), and enters the critical section

®m \We have two threads in the critical section, therefore we don’t have
mutual execution, therefore our lock() implementation is broken

" J——
Software Spin Lock: vO

B There is a race condition in the lock() function on
the boolean lock variable itself!

Ironically, our lock() function is not thread-safe!

Adding another lock on the lock would only push the
problem down one level, and so on...

® One possible solution could be to used a “turn-
based” system

A variable alternates between 0 and 1

A value of 0 indicates that Thread #1 should get access
to the critical section

A value of 1 indicates that Thread #2 should get access
to the critical section

Initially the value is (arbitrarily) setto 0
m [et’s look at the code

" J—_—
Software Spin Lock: v1

void lock(int *lock, int id) {
while (*lock !=id) {} // spin
*lock = id;

void unlock(int *lock, int id) {
*lock = 1 - id;

})

® Thread #1 calls the functions passing O as an
argument, and thread #2 calls the functions
passing 1 as an argument

® The code above solves the problem of the
previous implementation

The two threads cannot enter the critical section
because only a single thread can have its id equal
to the lock

®m \What is the problem?

" J——
Software Spin Lock: v1

void lock(int *lock, int id) {
while (*lock !=id) {} // spin
*lock = id;

void unlock(int *lock, int id) {
*lock = 1 - id;
})

®m The problem is starvation

m Consider the following sequence of locks and unlocks:
Thread A: lock(0);

Thread A: unlock(0);

Thread A: lock(0); // blocks!

®m Thread A is blocked until Thread B goes into the critical section
Thread B may not even do anything for the next hour

® Threads are forced to alternate in the critical section
Because it’s turn-based

® This goes against the principle of “no unnecessary delays”
m | et's look at another idea...

" J——
Software Spin Lock: v2

void lock(lock_t lock, int id) {
while (lock->flag[1-id] == true) {} // spin
lock->flag[id] = true;

void unlock(lock_t lock, int id) {
lock->flag[id] = false;

})
m Use two variables inside the lock:
typedef struct {
boolean flag[2]; // initialized to {false, false}
} *lock _t;

® The idea: when a thread wants to acquire the lock, it
looks at whether the other thread has it

® This avoids the “forced alternation” problem of the
previous solution

m But is it correct? Anybody?

" J——
Software Spin Lock: v2

void lock(lock_t lock, int id) {
while (lock->flag[1-id] == true) {} // spin
lock->flag[id] = true;

void unlock(lock_t lock, int id) {
lock->flag[id] = false;

})
® |ncorrect, for the same reason as v0 was broken: race
condition!
The two threads enter lock() “at the same time”
They both see the other’s flag set to false and proceed
We now have two threads in the critical section!

® This is a very typical problem

You cannot test for a condition and then take action based
on the test in a way that is atomic

= We saw this a few times already
More plainly: if (cond) { do_something; } is not atomic
m | et's look at yet another idea....

" J——_
Software Spin Lock: v3

void lock(lock_t lock, int id) {
lock->flag[id] = true;
while (lock->flag[1-id] == true) {} // spin

void unlock(lock_t lock, int id) {
lock->flag[id] = false;

;)
m To fix the problem we swap the two statements in function lock()

The idea is to right away (atomically) say “l want to enter the
critical section” by setting lock->flag[id]

There is no interleaving of the executions that can lead to both
threads entering the critical section simultaneously

lock->flag[0] = true; lock->flag[1] = true;
while(lock->flag[1] == true) yield(); while(lock->flag[0] == true) yield();

lock->flag[0] = false; lock->flag[1] = false;

m But now we have a new problem...

" J—_—
Software Spin Lock: v3

void lock(lock_t lock, int id) {
lock->flag[id] = true;
while (lock->flag[1-id] == true) {} // spin

void unlock(lock_t lock, int id) {
lock->flag[id] = false;

})

m Deadlock!
Both threads set their variables to true “at the same time”
» Thread #1 sets his to true
= Context-switch
» Thread #2 sets his to true
= And at this point both threads spin forever
m Again, unlikely but possible

Remember that we consider the OS scheduler as an
adversary

m | et’s look at yet another idea...

" J
Software Spin Lock: v4

void lock(lock_t lock, int id) {
lock->flag[id] = true;
while (lock->flag[1-id] == true) { // spin
lock->flag[id] = false;
lock->flag[id] = true;

void unlock(lock_t lock, int id) {
lock->flag[id] = false;

})
)

® The idea here is to fix the problem from v3 by having
threads back off when they realize they’re both

entering the function at the same time
If the other’s flag is set to true, | set mine to false, let the
other run for a while (which should happen due to OS

scheduling), and set mine to true again and check on the
other’s flag

® There is STILL a problem here! (really unlikely)

Software Spin Lock: v4

void lock(lock_t lock, int id) {

void unlock(lock_t lock, int id) {
lock->flag[id] = false;

}

® The problem is livelock!

lock->flag([id]

= true;

while (lock->flag[1-id] == true) { // spin

lock->flag

id] = false;

lock->flag

}
}

id] = true;

A kind of deadlock in which threads are in an infinite (or very long)
sequence of blocking and unblocking, like people in a hallway

® Threads could be in locked step

They both set their flags to true
They both set their flags to false

Repeat . . .

m \Vith false concurrency, this is virtually impossible (but probability # 0)
With true concurrency, the livelock is a bit likelier

m | et’s look at another idea...

" J——
Software Spin Lock: v

void lock(lock _t lock, int id) {
lock->flag[id] = true;
while (lock->flag[1-id] == true) {

void unlock(lock_t lock, int id) { if (lock->turn != id) {
lock->flag[id] = false; lock->flag[id] = false;
lock->turn = 1-id: while (lock->turn !=id) {} // spin
) lock->flag[id] = true;
}
}
m \We add a “turn” variable i
to the lock structure
typedef struct {
boolean flag[2];
int turn;
} *lock_t;

® The threads take turns backing off

® This is a very good solution [Dekker, 1960’s]
But it does allow starvation in some situations

" J——
Software Spin Lock: v6

®m |n 1981 Peterson came up with a complete and simpler solution:
typedef struct {

boolean flag[2];
int last;
} *lock _t;

B The /ast field tracks which thread last tried to enter the CS

® This is the thread that is delayed if both threads compete
Removes the starvation problem of v5

void unlock(lock t lock, int id) {
lock->flag[id] = false;

}

void lock(lock t lock, intid) {

lock->flag[id] = true;

lock->last = id;

while (lock->flag[1-id] == true && lock->last == id) {} // spin
}

" A
Software Locks: Bottomline

® Producing a good solution requires a lot of thought

® Thanks to Peterson we have one
Formally proving that it is a correct solution is not easy
= But in this course we don’t touch theory

Just know that detecting race conditions, deadlocks and
starvations by analyzing code is NP-hard

®m But what about more than 2 threads?
® Turns out things get much more complicated but doable

® The bakery algorithm (by Lamport)

Analogous to a bakery with a machine dispensing tickets to
customers

Cleverly designed to avoid all the problems we have seen
with v1, v2, v3, v4, and v5

Accommodates an arbitrary number of threads

"
Asking the Hardware for Help

® The software solutions are interesting

Especially because the same principles and reasoning
applies when writing concurrent applications that use locks

You're not expected to remember these solutions in this
course

But we will do similar analyses of user-level code for
correctness (good luck everyone!)

® But they can be time/memory consuming
lock() has quite a few instructions
lock t has quite a few bytes

® Common trend in the history of computing: hardware
solutions are simpler and faster than software solutions

e.g., hardware floating point, virtualization hardware support

" A
Atomic instructions

m | et’'s look at our first naive implementation

void lock(int *lock) {
while (*lock) {} // spin

*lock = 1;
}
® The assembly in RISC-like x86 assembly:
spin: mov R1, [lock] // Load lock
cmp R1,0 /[compare to O
jnz spin //'if not O, loop

mov [lock],1 //setlockto 0

®m Therefore, between the loading, the testing and the setting the
value may have changed, because a sequence of instructions
IS not atomic

B \Ne need an atomic “test and act’ instruction!

" J
Compare-and-Swap Instruction

®m Most processors provide atomic instructions that do
multiple things at once

® One such instruction is Compare and Swap (CAS)

®m CAS(location, old, new) does atomically:
if [location] == old, then [location] = new;
return true if value was changed,;
® You could think of this implemented in hardware by
locking the memory bus so that no other memory access
can occur in between the load, the test, and store

That is, the content of memory cannot be changed by another
thread while a thread is doing a CAS

In reality, the implementation is a bit more clever and

leverages “cache coherency protocols”, so that not all memory
operations are blocked

" JE
Spinlock with CAS

m \With the CAS instruction, one can then write the
pseudo-code for lock():

while (CAS(lock, 0 , 1) == false) {}

® |n words: if the lock is set to O then set it to 1 and
break from the loop, otherwise try again

m Fixes our first, simplest implementation with the help
of the hardware

It only works because CAS is atomic
®m And it's really fast!

® |[n everything we’ve talked about so far, our implementation
of the lock() function “spins” in loop

® That's why our lock is called a spinlock

B Spinning is good because one gets the lock as soon as it is
released

m But since it's always a good idea to have short critical
sections, then spinning isn’t bad since no thread will spin for
a long time

If the critical section were to be long the threads will spin
for a log time, wasting of CPU cycles (and power / heat)

Think of a bathroom analogy again: if the person in there
will be there for an houir, it's wasteful to stay by the door
and keep trying to turn the handle!

m So we're all good and don’t need anything else?

"
Spinning is Bad?

m Unfortunately, critical sections cannot
always be made short

m e.g., they involve some network
operation, some I/O operation

m \We really, really don’t want to spin for a long
time due to waste of CPU cycles

® And so, this is why we have Blocking Locks
® You should have seen them in [CS332

" J
Blocking Locks (Mutexes)

® A radically different option in which the OS is involved

® The lock() function is modified so that if the lock is taken,
instead of spinning, the thread is put to “sleep” by the OS
More precisely, the thread is removed from the ready queue
and put in a queue associated to the lock
® \When the lock is released via unlock(), the OS puts the
thread back into the ready queue

The thread will eventually re-attempt to acquire the lock and
may get it, or will be put back to sleep
m |f the critical section is short, a blocking lock has very high
overhead
Essentially, a system call + context-switch is involved when you
could have instead been spinning for only a few cycles
m But, if the lock is taken for a long time, then no CPU cycles
are wasted spinning

Spinlock vs. Blocking Locks

short critical long critical
section section
spinlocks v many wasted
P CPU cycles
blocking locks | high overhead v/

® Both types of locks are available on most

systems

"
Choosing?

®m Sometimes the duration of a critical section is clear:
add 1 to a counter: short -> use a spinlock
update a database: long -> use a blocking lock

® But in many cases it's not easy to tell

® For this reason, most systems provide hybrid locks
First behaves like a spinlock
If spinning too long, then behaves like a blocking lock
Plus other custom behaviors that aim to strike a good compromise
between CPU waste and responsiveness
m Typically, it's a great idea to use the provided hybrid locks
What Java provides by default, pthread mutex t in C/
Pthreads, ...
® For instance, one some systems, even with short “x++"
critical sections, I've found hybrid locks to be better than
spinlocks in terms of performance!

Recap

Recap

people decades ago

| = Not efficient in terms of CPU and RAM_§

Recap

@ hardware

“‘compare and swap” instructions

| = Efficient n terms of CPUand RAM |

hardware

as soon as it becomes
! available

{ = The Bad: while waiting for 3
! the lock to become available §
¢ one wastes CPU cycles 1

"

Recap

@ hardware

Recap

| = Instead of spinning, the |

thread is put to sleep by
the OS and re-awakened
when the lock becomes

{ available

Recap

@ hardware)}

[= Th

= The Good: no waste of
CPU cycles while a thread §
IS sleeping i
Bad: high overhead §

"

Recap

@ hardware .

Recap

@ hardware

block threads to achieve a good
! compromise between overhead |
i and responsiveness 1

"

Recap

@ hardware .

called “mutex”

(due to the Pthread APl in C...)

" J
A real-life metaphor

® You're a thread and you are in a coffee shop with a single
bathroom, and many other threads

m Spinlock:

| go to the bathroom, | wait in line, when | get first in line | keep
turning the handle until it opens and get in immediately(-ish)

m Blocking lock

| go to the bathroom, | see it's busy, | go to the barista and say
“Can you come get me when the bathroom is free” and | go back
to my table where | take a nap. Later, the barista comes by and
tells me | can go in the bathroom (provided nobody got in there
in the meantime... more on this later)

m Hybrid lock

| go to the bathroom, try the “spinlock” thing for 5 seconds in
case | am lucky and the person inside is just about to finish.
After 5 seconds | give up and try the “blocking lock” thing

" A
Conclusion

®m | ocks are used to create critical sections

® Three kinds of locks
Spinlock
Blocking locks
Hybrid locks
® These locks ALL do the same things, but

achieve different levels of responsiveness and
CPU cycle consumption

m Different locks are good for different critical
section lengths

® |n practice, systems provide good hybrid locks
that most users use

® Onward to what Java does!

