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Implementing Lock?
 At this point we know how to use lock() and 

unlock() to create critical sections  
 Question: how does one implement lock()?  

 Granted, you will probably never need to as languages/
systems provide them 

 But it’s interesting to have some idea of how things work 
 And it will be our first attempt at truly reasoning 

about concurrency 
 The first natural attempt is to try to implement 

lock() and unlock() in software, like any other 
method/function 

 Following the pseudo-code in the previous set of lecture 
notes



Spinlocks
 We’ll use the following basic idea 
 A lock will be a boolean variable, initially set to 0 

 0 means: nobody “has the lock”, i.e., no thread is in the 
critical section defined by the lock 

 lock(): 
 While lock == 1, keep testing until the lock is == 0 
 When lock == 0, then set the lock to 1 

 So that other threads can’t get in 

 unlock() 
 set lock to 0 

 This is called spinning because if a thread is already 
in the critical section, another will keep testing the 
lock over and over



Assumptions
 To simplify we’ll assume 

 A single core (false concurrency) 
 An OS with a scheduler that does some type of round-

robin scheduling (time-slicing via context-switching) 
 We’re going to go through a series of implementations 

 Re-tracing the history of “software spinlocks" 
 We’ll analyze each implementation for correctness 
 We assume that the OS scheduler is an adversary 

 It tries to place context-switches inconveniently so as to 
break correctness 

 If there is one case, no matter how unlikely, in which 
the execution is incorrect, then we declare the code 
broken



Software Spin Locks: v0
 The simplest (but wrong) possible implementation

void unlock(int *lock) { 
  *lock = 0; 
}

void lock(int *lock) { 
  while (*lock) {}  // spin 
  *lock = 1; 
}

 What’s wrong with this implementation?



Software Spin Locks: v0
void lock(int *lock) { 
  while (*lock) {} // spin 
  *lock = 1; 
}

 Assume the lock is unlocked, and we have two threads 
 Thread A calls lock, and doesn’t spin because *lock = 0 
 Before thread A gets a chance to set *lock to 1, it is context-

switched out 
 Thread B is context-switched in, calls lock(), doesn’t spin because 

*lock = 0, sets *lock to 1, enters the critical section protected by the 
lock, and get context-switched out 

 Thread A is context-switched back in, sets *lock to 1 (which it 
already is!), and enters the critical section 

 We have two threads in the critical section, therefore we don’t have 
mutual execution, therefore our lock() implementation is broken



Software Spin Lock: v0
 There is a race condition in the lock() function on 

the boolean lock variable itself! 
 Ironically, our lock() function is not thread-safe! 
 Adding another lock on the lock would only push the 

problem down one level, and so on... 
 One possible solution could be to used a “turn-

based” system 
 A variable alternates between 0 and 1 
 A value of 0 indicates that Thread #1 should get access 

to the critical section 
 A value of 1 indicates that Thread #2 should get access 

to the critical section 
 Initially the value is (arbitrarily) set to 0 

 Let’s look at the code



Software Spin Lock: v1

 Thread #1 calls the functions passing 0 as an 
argument, and thread #2 calls the functions 
passing 1 as an argument 

 The code above solves the problem of the 
previous implementation 
 The two threads cannot enter the critical section 

because only a single thread can have its id equal 
to the lock 

 What is the problem? 

void unlock(int *lock, int id) { 
  *lock = 1 - id; 
}

void lock(int *lock, int id) { 
  while (*lock != id) {}  // spin 
  *lock = id; 
}



Software Spin Lock: v1

 The problem is starvation 
 Consider the following sequence of locks and unlocks: 
Thread A: lock(0); 
Thread A: unlock(0); 
Thread A: lock(0);     // blocks! 
 Thread A is blocked until Thread B goes into the critical section 

 Thread B may not even do anything for the next hour 
 Threads are forced to alternate in the critical section 

 Because it’s turn-based 
 This goes against the principle of “no unnecessary delays”  
 Let’s look at another idea...

void unlock(int *lock, int id) { 
  *lock = 1 - id; 
}

void lock(int *lock, int id) { 
  while (*lock != id) {}  // spin 
  *lock = id; 
}



Software Spin Lock: v2

 Use two variables inside the lock: 
  typedef struct { 
       boolean flag[2];   // initialized to {false, false} 
  } *lock_t; 

 The idea: when a thread wants to acquire the lock, it 
looks at whether the other thread has it 

 This avoids the “forced alternation” problem of the 
previous solution 

 But is it correct?  Anybody?

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  while (lock->flag[1-id] == true) {} // spin 
  lock->flag[id] = true; 
}



Software Spin Lock: v2

 Incorrect, for the same reason as v0 was broken: race 
condition! 

 The two threads enter lock() “at the same time” 
 They both see the other’s flag set to false and proceed 
 We now have two threads in the critical section! 

 This is a very typical problem 
 You cannot test for a condition and then take action based 

on the test in a way that is atomic 
 We saw this a few times already 

 More plainly: if (cond) {  do_something; }   is not atomic 
 Let’s look at yet another idea....

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  while (lock->flag[1-id] == true) {} // spin  
  lock->flag[id] = true; 
}



Software Spin Lock: v3

 To fix the problem we swap the two statements in function lock() 
 The idea is to right away (atomically) say “I want to enter the 

critical section”  by setting lock->flag[id] 
 There is no interleaving of the executions that can lead to both 

threads entering the critical section simultaneously 

lock->flag[0] = true;         lock->flag[1] = true; 
while(lock->flag[1] == true) yield();       while(lock->flag[0] == true) yield(); 
. . .                . . . 
lock->flag[0] = false;         lock->flag[1] = false; 

 But now we have a new problem...

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) {} // spin 
}



Software Spin Lock: v3

 Deadlock! 
 Both threads set their variables to true “at the same time” 

 Thread #1 sets his to true 
 Context-switch 
 Thread #2 sets his to true 
 And at this point both threads spin forever 

 Again, unlikely but possible 
 Remember that we consider the OS scheduler as an 

adversary 
 Let’s look at yet another idea…

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) {} // spin 
}



Software Spin Lock: v4

 The idea here is to fix the problem from v3 by having 
threads back off when they realize they’re both 
entering the function at the same time 

 If the other’s flag is set to true, I set mine to false, let the 
other run for a while (which should happen due to OS 
scheduling), and set mine to true again and check on the 
other’s flag 

 There is STILL a problem here!  (really unlikely)

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) { // spin 
      lock->flag[id] = false; 
      lock->flag[id] = true; 
  } 
}



Software Spin Lock: v4

 The problem is livelock! 
 A kind of deadlock in which threads are in an infinite (or very long) 

sequence of blocking and unblocking, like people in a hallway 
 Threads could be in locked step  

 They both set their flags to true 
 They both set their flags to false 
  Repeat . . . 

 With false concurrency, this is virtually impossible (but probability ≠ 0) 
 With true concurrency, the livelock is  a bit likelier 

 Let’s look at another idea…

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) { // spin 
      lock->flag[id] = false; 
      lock->flag[id] = true; 
  } 
}



Software Spin Lock: v5

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
  lock->turn = 1-id; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  while (lock->flag[1-id] == true) { 
    if (lock->turn != id) { 
       lock->flag[id] = false; 
       while (lock->turn != id) {} // spin 
       lock->flag[id] = true; 
    } 
  } 
} We add a “turn” variable              

to the lock structure 
 typedef struct { 
   boolean flag[2]; 
   int turn; 
 } *lock_t; 
 The threads take turns backing off 
 This is a very good solution  [Dekker, 1960’s] 

 But it does allow starvation in some situations



Software Spin Lock: v6

void unlock(lock_t lock, int id) { 
  lock->flag[id] = false; 
}

void lock(lock_t lock, int id) { 
  lock->flag[id] = true; 
  lock->last = id; 
  while (lock->flag[1-id] == true && lock->last == id) {} // spin 
}

 In 1981 Peterson came up with a complete and simpler solution: 
  typedef struct { 
      boolean flag[2]; 
      int last; 
  } *lock_t; 

 The last field tracks which thread last tried to enter the CS 
 This is the thread that is delayed if both threads compete 

 Removes the starvation problem of v5



Software Locks: Bottomline
 Producing a good solution requires a lot of thought 
 Thanks to Peterson we have one 

 Formally proving that it is a correct solution is not easy 
 But in this course we don’t touch theory 

 Just know that detecting race conditions, deadlocks and 
starvations by analyzing code is NP-hard 

 But what about more than 2 threads? 
 Turns out things get much more complicated but doable 
 The bakery algorithm (by Lamport) 

 Analogous to a bakery with a machine dispensing tickets to 
customers 

 Cleverly designed to avoid all the problems we have seen 
with v1, v2, v3, v4, and v5 

 Accommodates an arbitrary number of threads



Asking the Hardware for Help
 The software solutions are interesting 

 Especially because the same principles and reasoning 
applies when writing concurrent applications that use locks 

 You’re not expected to remember these solutions in this 
course 

 But we will do similar analyses of user-level code for 
correctness (good luck everyone!) 

 But they can be time/memory consuming 
 lock() has quite a few instructions 
 lock_t has quite a few bytes 

 Common trend in the history of computing: hardware 
solutions are simpler and faster than software solutions 

 e.g., hardware floating point, virtualization hardware support



Atomic instructions
 Let’s look at our first naive implementation

void lock(int *lock) { 
    while (*lock) {}   // spin 
    *lock = 1; 
}

 The assembly in RISC-like x86 assembly:  
 spin: mov R1, [lock]   // Load lock 
   cmp R1, 0    // compare to 0 
   jnz  spin // if not 0, loop 
   mov [lock], 1 // set lock to 0 
 Therefore, between the loading, the testing and the setting the 

value may have changed, because a sequence of instructions 
is not atomic 

 We need an atomic “test and act” instruction!



Compare-and-Swap Instruction
 Most processors provide atomic instructions that do 

multiple things at once 
 One such instruction is Compare and Swap (CAS) 
 CAS(location, old, new) does atomically: 

 if [location] == old, then [location] = new;  
 return true if value was changed; 

 You could think of this implemented in hardware by 
locking the memory bus so that no other memory access 
can occur in between the load, the test, and store 

 That is, the content of memory cannot be changed by another 
thread while a thread is doing a CAS 

 In reality, the implementation is a bit more clever and 
leverages “cache coherency protocols”, so that not all memory 
operations are blocked



Spinlock with CAS
 With the CAS instruction, one can then write the 

pseudo-code for lock(): 
  while (CAS(lock, 0 , 1) == false) { } 

 In words: if the lock is set to 0 then set it to 1 and 
break from the loop, otherwise try again 

 Fixes our first, simplest implementation with the help 
of the hardware 
 It only works because CAS is atomic 

 And it’s really fast!



Spinning?
 In everything we’ve talked about so far, our implementation 

of the lock() function “spins” in loop 
 That’s why our lock is called a spinlock 
 Spinning is good because one gets the lock as soon as it is 

released 
 But since it’s always a good idea to have short critical 

sections, then spinning isn’t bad since no thread will spin for 
a long time 

 If the critical section were to be long the threads will spin 
for a log time, wasting of CPU cycles (and power / heat) 

 Think of a bathroom analogy again: if the person in there 
will be there for an hour, it’s wasteful to stay by the door 
and keep trying to turn the handle! 

 So we’re all good and don’t need anything else?



Spinning is Bad?
 Unfortunately, critical sections cannot 

always be made short 
 e.g., they involve some network 

operation, some I/O operation 
 We really, really don’t want to spin for a long 

time due to waste of CPU cycles 

 And so, this is why we have Blocking Locks 
 You should have seen them in ICS332



Blocking Locks (Mutexes)
 A radically different option in which the OS is involved 
 The lock() function is modified so that if the lock is taken, 

instead of spinning, the thread is put to “sleep” by the OS 
 More precisely, the thread is removed from the ready queue 

and put in a queue associated to the lock 
 When the lock is released via unlock(), the OS puts the 

thread back into the ready queue 
 The thread will eventually re-attempt to acquire the lock and 

may get it, or will be put back to sleep 
 If the critical section is short, a blocking lock has very high 

overhead 
 Essentially, a system call + context-switch is involved when you 

could have instead been spinning for only a few cycles 
 But, if the lock is taken for a long time, then no CPU cycles 

are wasted spinning



Spinlock vs. Blocking Locks

short critical 
section

long critical 
section

spinlocks ✔
many wasted 
CPU cycles

blocking locks high overhead ✔

 Both types of locks are available on most 
systems



Choosing?
 Sometimes the duration of a critical section is clear: 

 add 1 to a counter: short -> use a spinlock 
 update a database: long -> use a blocking lock 

 But in many cases it’s not easy to tell 
 For this reason, most systems provide hybrid locks 

 First behaves like a spinlock 
 If spinning too long, then behaves like a blocking lock 
 Plus other custom behaviors that aim to strike a good compromise 

between CPU waste and responsiveness 
 Typically, it’s a great idea to use the provided hybrid locks 

 What Java provides by default,  pthread_mutex_t  in C/
Pthreads, ... 

 For instance, one some systems, even with short “x++” 
critical sections, I’ve found hybrid locks to be better than 
spinlocks in terms of performance!



Recap

Spinlocks



Recap

Spinlocks

software



Recap

Spinlocks

software

➡Complicated, but solved by smart 
people decades ago 

➡Not efficient in terms of CPU and RAM 
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software hardware



Recap

Spinlocks

software hardware

➡ Easy once processors provided atomic 
“compare and swap” instructions 

➡ Efficient in terms of CPU and RAM



Recap

software hardware

➡ The Good: one gets the lock 
as soon as it becomes 
available 

➡ The Bad: while waiting for 
the lock to become available 
one wastes CPU cycles

Spinlocks



Recap

software hardware

Spinlocks Blocking 
locks



Recap

software hardware

Spinlocks Blocking 
locks

➡ Instead of spinning, the 
thread is put to sleep by 
the OS and re-awakened 
when the lock becomes 
available



Recap

software hardware

Spinlocks Blocking 
locks

➡ The Good: no waste of 
CPU cycles while a thread 
is sleeping 

➡ The Bad: high overhead
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software hardware

Spinlocks Blocking 
locks

Hybrid 
locks



Recap

software hardware

Spinlocks Blocking 
locks

Hybrid 
locks

➡ Adaptive locks that spin and/or 
block threads to achieve a good 
compromise between overhead 
and responsiveness



Recap

software hardware

Spinlocks Blocking 
locks

Hybrid 
locks

➡ A blocking lock is sometimes 
called “mutex” 

(due to the Pthread API in C…)



A real-life metaphor
 You’re a thread and you are in a coffee shop with a single 

bathroom, and many other threads 
 Spinlock:  

 I go to the bathroom, I wait in line, when I get first in line I keep 
turning the handle until it opens and get in immediately(-ish) 

 Blocking lock 
 I go to the bathroom, I see it’s busy, I go to the barista and say 

“Can you come get me when the bathroom is free” and I go back 
to my table where I take a nap. Later, the barista comes by and 
tells me I can go in the bathroom (provided nobody got in there 
in the meantime… more on this later) 

 Hybrid lock 
 I go to the bathroom, try the “spinlock” thing for 5 seconds in 

case I am lucky and the person inside is just about to finish. 
After 5 seconds I give up and try the “blocking lock” thing



Conclusion
 Locks are used to create critical sections 
 Three kinds of locks 

 Spinlock 
 Blocking locks 
 Hybrid locks 

 These locks ALL do the same things, but 
achieve different levels of responsiveness and 
CPU cycle consumption 

 Different locks are good for different critical 
section lengths 

 In practice, systems provide good hybrid locks 
that most users use 

 Onward to what Java does!


