
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Java and Locks

Java and Locks
 Java makes it very simple
 EVERY Java Object has a lock hidden within it!

 That implements adaptive/hybrid spinning/blocking
 Spins for a while, then blocks

 Some methods can be declared synchronized
 A class can have both synchronized and non-

synchronized methods
 Synchronized methods are executed in mutual

exclusion with implicit calls for lock() and unlock()
on the lock hidden within the object

 So you can use locks in Java without calling lock()
or unlock()

 This way you won’t forget the unlock()!

Synchronized Methods

 At all times: #threads in SomeMethod() + #threads in SomeOtherMethod() <= 1

 Coarse-grained mutual exclusion
 Implemented internally with a single lock, invisible to you (in the Object class)

public class SomeClass {

 public synchronized void SomeMethod() {
 . . .
 }

 public synchronized void SomeOtherMethod() {
 . . .
 }

}

Example of synchronized
public class Counter {
 private int value;
 public Counter() {
 value = 0;
 }

 public synchronized void increment() {
 value++;
 }

 public synchronized void decrement() {
 value--;
 }

 public int getValue() {
 return value;
 }
}

Counter counter = new Counter();

// Thread 1
. . .
counter.increment();
. . .

// Thread 2
. . .
counter.decrement();
. . .

 Methods increment() and
decrement() are thread-safe

Synchronized Statements
 It is not always good to have an entire method be

used in mutual exclusion
 Perhaps there are only a few “critical” statements in the

method
 And we have seen that shorter critical sections are better

for concurrency/performance
 The solution could be to put the critical statements in their

own methods
 But then we artificially create more method calls, which

may add clutter and also harms performance (although
we hope the compiler does inlining)

 As a result, Java provides ways to have
synchronized statements inside non-synchronized
methods

 And so the weirdness begins…

Synchronized Statements
 Two threads can print “hello” and/

or “bye” at the same time
 But only one can increment the

value at a time

 The synchronized(this)
statement makes it possible to
make short critical sections and
thus maximize concurrency

 this refers to the current instance,
which is an Object, and thus a lock
inside it!

 synchronized(x) means“call lock()
on the lock that is inside the object
referenced by x”

public class Counter {
 private int value;
 public Counter() {
 value = 0;
 }

 public void increment() {
 System.out.println(“hello”);
 synchronized(this) {
 value++;
 }
 System.out.println(“bye”);
 }

 . . .
}

Only One Lock?
 Having only one lock per object can be a problem
 Say you define a class in which not all methods

need to be in mutual exclusion
 Example:

 Methods f1 and f2 should be executed in mutual
exclusion

 Methods f3 and f4 should be executed in mutual
exclusion

 Methods f1 and f3 can be executed concurrently
 Methods f1 and f4 can be executed concurrently
 Methods f2 and f3 can be executed concurrently
 Methods f2 and f4 can be executed concurrently

Example: Two Counters
 This solution is correct, but overly

restrictive
 Two threads should be allowed to

update two different counters
simultaneously

 In this case, with a single lock there
is no way to do this

 Therefore, we need to have multiple
locks

 Problem: The TwoCounters object
has only one (hidden) lock!

public class TwoCounters {
 private int value1, value2;
 public TwoCounters() {
 value1 = 0; value2 = 0;
 }

 public void increment1() {
 synchronized(this) {
 value1++;
 }
 }

 public void increment2() {
 synchronized(this) {
 value2++;
 }
 }
}

Synchronizing on Multiple Objects

 When synchronizing statements one
uses the synchronized(this) statement

 The “this” specifies that one uses the lock
inside the current object (this)

 It’s standard, but in fact one can
synchronize on the lock of any object

 This is going to “look weird”, but solves
the quandary in the previous slide
 One of the many examples of “clean

design vs. high performance” struggles

Example: Two Counters
 Now we have a distinct lock for each counter
 Note that these locks are encapsulated

within Object objects
 I name these objects lock1 and lock2 just to

remind myself that they are used exclusively
for mutual exclusion

 I could have used any object in the program
really, but it’s typically not very readable

 Code like synchronized(window) would
seem to imply “window synchronization”
(whatever that means), when really it’s
just “lock/unlock the lock that happens to
be hidden in the window object”

 Many programmers find this confusing,
and they’re right

 We will see later that there is a Lock class
we can use….

public class TwoCounters {
 private int value1, value2;
 private Object lock1, lock2;

 public TwoCounters() {
 value1 = 0; value2 = 0;
 lock1 = new Object();
 lock2 = new Object();
 }

 public void increment1() {
 synchronized(lock1) {
 value1++;
 }
 }
 public void increment2() {
 synchronized(lock2) {
 value2++;
 }
 }
}

Synchronized Class
 So far, we have seen mutual exclusion over

objects, i.e., instances of classes
 Sometimes one wants a particular method to be

in mutual exclusion over all instances of the class
 Example: only one thread can update some

global sum of all the counters at a given time
 One way to do this is to encapsulate the global

sum in its own object, with its own lock
 Another way is to declare a “class method”, i.e., a

static method, as synchronized

Example
public class Counter {
 private int value;
 static private int sum = 0;

 public Counter() {
 value = 0;
 }

 public void increment() {
 synchronized(this) { value++; }
 }

 public static synchronized void updateSum(int value) {
 sum += value;
 }
}

 Only one Counter
object can update
the class variable at
a time

 You guessed it,
each class has a
lock hidden inside it

 So if you define one
Java class and
creates 6 instances
of that class, in total
you’ve created 7
hidden locks

Summary so Far

 The synchronized keyword is the way to
implement mutual exclusion
 At the class level, e.g., public static
synchronized

 At the method level, e.g., public synchronized
 At the statement level, e.g., synchronized(…){ }

 One can create objects just for the purpose of
using their locks for mutual exclusion

 The main advantage of the synchronized
keyword: you will never forget to call unlock()

 Which is of course a common cause of deadlocks

java.util.concurrent.locks
 This package provides explicit lock implementations
 But then you mustn’t forget to call unlock:

 Why would you use these rather than relying on
the one-size-fits-all synchronized?

lock.lock();
try {
 . . .
} finally {
 lock.unlock()
}

java.util.concurrent.locks
 Main motivation: More functionality/flexibility
 ReentrantLock has many useful methods

 getOwner(), getQueueLength(),
isHeldByCurrentThread(), isLocked(), tryLock(), …

 ReadWriteLock is useful
 A special lock that can be held by either one “writer”

thread, or by any number of “reader” threads
 More on this later...

 These locks never spin, which can have lower
performance than synchronized for short critical
sections
 And may limit compiler optimizations

foo

10000 0.003 0.01

20000 0.005 0.002

40000 0.012 0.006

80000 0.012 0.009

160000 0.005 0.009

320000 0.008 0.019

640000 0.017 0.048

1280000 0.035 0.086

2560000 0.071 0.184

5120000 0.143 0.378

10240000 0.302 0.752

20480000 0.587 1.436

40960000 1.174 3.381

81920000 2.375 6.135

163840000 4.674 11.769

327680000 9.516 25.005

655360000 20.318 47.661

TI
M

E
IN

 S
EC

ON
DS

0.000

12.500

25.000

37.500

50.000

ARRAY SIZE

ReentrantLock Synchronized

1

lock.lock();
sum += array[i];
lock.unlock();

synchronized(this) {
 sum += array[i];
}

java.util.concurrent.locks

on my laptop

java.util.concurrent Atomics

 java.util.concurrent provides many simple
classes of variable that can be updated
atomically

 Say you want to write a program that maintains
a shared counter
 You’ll have to create a new class with synchronized

methods for increment, decrement, etc.
 Almost all Java developers who write concurrent

programs have done this and will do it again
 java.util.concurrent provides all this

 Let’s look at the documentation for AtomicInteger…

java.util.concurrent Atomics

 Many “atomics” in java.util.concurrent:
 AtomicBoolean
 AtomicIntegerArray
 AtomicLongArray
 . . .

 So, rather than re-inventing the wheel each
time, using these classes from
java.util.concurrent may be a better idea
 Some people do not find them very readable and

end up writing wrapper functions around them
 Still, removes the need to deal with synchronized

Let’s Talk about volatile again!
 Remember the Java volatile keyword?
 Many developers don’t know about volatile and yet they

have written multi-threaded Java for months (years?)
 Some day, they get hit with the “Thread #1 updates

something, but Thread #2 never sees it!!” bug
 This happened with a ICS111 TA years ago who was writing a

multi-threaded GUI in which there were long, unexplained lags
 But in almost all multi-threaded programs we need

threads to see recent updates to memory at least for
some variables!

 After all we use threads because they share memory, so if they
don’t “see” memory updates, what’s the point?

 How could a Java developer not know volatile???

synchronized is more than it seems
 It turns out that in Java entering a synchronized method /

block of code ALSO synchronizes memory
 Acquiring a lock forces all variable values to be updated with

“main memory” values
 Releasing a lock forces all written variable values to be written

to “main memory”
 In other terms, each time you enter/leave a synchronized section

of code, memory fence instructions are executed
 Which has a performance hit

 So in all the examples we’ve seen in the previous and this module
we never needed to worry about “will the thread see the last
value?” because accesses to shared variables were always within
synchronized methods or blocks!

 This is why volatile is not well known, and so baffling when
you discover it on your own (or worse, when it causes a bug)

volatile and Tread Safety?

 Volatile does nothing for atomicity
 Having multiple threads do “var++” on volatile

variable var is still a race condition
Thread #1 reads the value into a register
Thread #2 reads the value into a register
Thread #1 writes the value to RAM

 At this point all threads reading the value see
the new value in RAM

Thread #2 writes the value to RAM
 We still have a lost update
 In spite of Thread #2 always seeing the latest

value in RAM (but not in registers!)

Example with a tiny class

public class SomeValue {
 private float value = 0.0;

 void set(float v) {
 value = v;
 }

 float get() {
 return value;
 }

 Consider the following simple class:

 In a multi-threaded context, the problem is thst
threads may not see the latest value

Example with a tiny class

public class SomeValue {
 private volatile float value = 0.0;

 void set(float v) {
 value = v;
 }

 float get() {
 return value;
 }

 Consider the following simple class:

 A good fix is to make the variable volatile

Example with a tiny class

public class SomeValue {
 private float value = 0.0;

 void synchronized set(float v) {
 value = v;
 }

 float synchronized get() {
 return value;
 }

 Consider the following simple class:

 A not-as-good fix is to make methods synchronized
 We’re using synchronized not because we want to prevent race

conditions, but just because it has the side effect of having
threads see the latest value

 It works, but performance is much lower than just using volatile

More expensive, and it More expensive, and it
looks strange to put
synchronized around
atomic statements!

Performance Comparison
foo

1000000 0.03 0.069

2000000 0.034 0.116

4000000 0.046 0.229

8000000 0.107 0.459

16000000 0.201 0.88

32000000 0.405 1.917

64000000 0.871 4.057

128000000 1.491 8.011

256000000 3.267 16.63

512000000 10.14 33.101

TI
M

E
IN

 S
EC

ON
DS

0.000

10.000

20.000

30.000

40.000

NUMBER OF ITERATIONS
2000000 8000000 32000000 128000000 512000000

Volatile Synchronized

1

on my laptop

In a NutShell

 If your variables are read/written/
updated in synchronized blocks, you
don’t need volatile at all

 You should use volatile when
 One thread writes the variable
 One or more threads read the variable

 In this case you don’t need mutual
exclusion, and volatile is much
cheaper than synchronized

 How many of you have heard of the Singleton design
pattern? (How about design patterns in general?)

public class Whatever {
 private SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) {
 instance = new SomeObject();
 }
 return instance;
 }
}

 Useful when there must be a single instance of one class
 The first call to the getInstance() method creates that instance
 Every subsequent call just gets a reference to the instance

Since we’re Talking volatile…

Multi-threaded Singleton
 Of course, with threads, we must make it synchronized:

public class Whatever {
 private SomeObject instance = null;

 public synchronized SomeObject getInstance() {
 if (instance == null) {
 instance = new SomeObject();
 }
 return instance;
 }
}

 We have to make it thread-safe because “testing
and doing” isn’t atomic

 So far, so good

Multi-threaded Singleton
 If you are a performance person, you hate this code

public class Whatever {
 private SomeObject instance = null;
 public synchronized SomeObject getInstance() {
 if (instance == null) {
 instance = new SomeObject();
 }
 return instance;
 }
}

 “if (instance == null)” is useless 99.99999% of the time (after the first
call it always returns false), but makes the critical section longer!

 And your ICS432 professor told you to make critical sections short!

Double-Checked Locking (DCL)
 A popular performance fix:

public class Whatever {
 private SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) { // first check
 synchronized(this){
 if (instance == null) { // second check
 instance = new SomeObject();
 }
 }
 }
 return instance;
 }
}

 Enter the synchronized section only if needed!

Double-Checked Locking (DCL)
 A popular performance fix:

public class Whatever {
 private SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) { // first check
 synchronized(this){
 if (instance == null) { // second check
 instance = new SomeObject();
 }
 }
 }
 return instance;
 }
}

 Enter the synchronized section only if needed!

There is an insanely subtle problem with this code

The Problem with DCL
 The problem takes us (again) down the path of

correctness problems posed by compiler
optimization

 A very common-place optimization is inlining:
replacing a method call by the code of the method
 This saves a method call, which saves on stack

operations (ICS312 anyone?)
 So a Java compiler may inline the constructor call
 Say SomeObject has the following constructor:

public SomeObject() {
 this.x = 12;
 this.y = 42;
}

The “real” Constructor Code

 // Constructor code
 SomeObject *ptr = (SomeObject *)malloc(...);
 ptr->x = 12;
 ptr->y = 42;
 return ptr;

 The constructor really does this:

 Let’s inline this code in the main program…

Constructor Inlining
public class Whatever {
 private SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) { // first check
 synchronized(this){
 if (instance == null) { // second check
 instance = (SomeObject *)malloc(…);
 instance->x = 12;
 instance->y = 42;
 }
 }
 }
 return instance;
 }
}

Constructor Inlining
public class Whatever {
 private SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) { // first check
 synchronized(this){
 if (instance == null) { // second check
 instance = (SomeObject *)malloc(…);
 instance->x = 12;
 instance->y = 42;
 }
 }
 }
 return instance;
 }
}

anybody sees a problem?

Constructor Inlining
public class Whatever {
 private SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) { // first check
 synchronized(this){
 if (instance == null) { // second check
 instance = (SomeObject *)malloc(…);
 instance->x = 12;
 instance->y = 42;
 }
 }
 }
 return instance;
 }
}

Thread #1 has just called malloc(),
and is context-switched out

Thread #2 arrives, sees the instance a
NOT NULL, retrieves the reference to
it, and accesses uninitialized fields!!!

Solution: make instance volatile
public class Whatever {

 private volatile SomeObject instance = null;
 public SomeObject getInstance() {
 if (instance == null) { // first check
 synchronized(this){
 if (instance == null) { // second check
 instance = (SomeObject *)malloc(…);
 instance->x = 12;
 instance->y = 42;
 }
 }
 }
 return instance;
 }
}

volatile will guarantee the read/
writes are in program order and
prevent the compiler from doing some
optimization

In this case, it prevents a partially
initialized object from being read

Double-Checked Locking
 For a fun scary time, do a Web search on “double-checked

locking”, “java”, “harmful”, “volatile”
 Safe DCL with Java using volatile started with Java 5 (i.e., the

Java people fixed DCL)
 There is a lot of confusion out there
 Many think that a Singleton pattern is not a good idea in the first

place?
 Can’t you use a static variable???

 And often DCL only saves a bit of performance… do you really
have thousands of threads all calling getInstance() like crazy?

 The goal here was to expose you to yet-another-example-that-
shows-that-abstractions-are-not-perfect, especially because we’re
so performance-driven…

 This could be a constant theme in this course, but we will just see
a few examples here and there

Conclusions

 Two ways to do locks in Java:
 The synchronized keyword
 java.util.concurrent.locks

 Each has drawbacks and advantages
 Synchronization implies memory fences

 Google “Java Memory Model” to go down a
fascinating but almost bottomless rabbit hole

 Double-checked locking is weird

 Onward to Homework Assignment #4…

