
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Locks: Principles

Disclaimer

 The first few slides are a review of ICS332
material

 But this material is so important, that going
over it again is a good idea
 Especially if ICS332 was a few semesters ago

Thread Safety
 In the previous module we’ve talked about

the need for thread safety
 i.e., the need to have threads read/write

the same memory locations without
race condition

 In this module we talk about how we can
make a piece of code thread-safe

 The most basic concept for achieving thread
safety is called a Lock

Atomicity and mutual exclusion
 What we need is a mechanism that makes a sequence of

operations atomic
 Atomicity is really mutual exclusion

 Whenever the sequence is initiated by thread A, we are
guaranteed that no other thread can initiate it before thread A
completes it

 If you’ve taken databases, you can think of this is a kind of
transaction

 This is a great idea, but how can we specify this in a
program?

 Answer: critical sections
 A critical section is a section of code in which only one

thread is allowed at a time
 Not necessarily a contiguous section of code

Critical Sections
 Two critical sections in a program

 No two threads can be in “blue” code at the same
time

 No two threads can be in “red” code at the same time
 We could have one thread doing “blue”, one thread

doing “red”, and many threads doing anything else

Critical Sections
 One would like to write code that looks like this:

	 	 	 while(true) {
 	 enter_CS(blue)
 	 x++
 	 leave_CS(blue)
 	 }

 We would like to have the following properties
 Mutual exclusion: only one thread can be inside the CS
 No deadlocks: one of the competing threads will enter

the CS
 No unnecessary delays: a thread enters the CS

immediately if no other thread is competing for it
 Eventual entry: a thread that tries to enter the critical

CS will enter it at some point

Critical Sections with Locks
 The concept of a critical section is binary

Either 0 threads are in the critical section
Or 1 thread is in the critical section

 Therefore, the critical section can be “controlled” with a
boolean variable

 This variable is called a lock
 Can take one of two values: “locked” or “unlocked”
 Initially set to “unlocked”

 Just like going to the toilet (if you’ve taken ICS332 from me,
perhaps you remember this)

While the lock is “red” get in the waiting line
When the lock becomes “green” if you’re first in line go in

and set the lock to “red”
When you leave, set the lock to “green”

Locks
 Different languages have different ways to

declare/use locks
 We’ll see ways to do it in Java and C/C++

 Let’s use a C-like syntax for now:
 Declaration: 	 lock_t *lock = new_lock()	

	 (initialized to “unlocked”)
 Acquire the lock: 	 lock(lock)
 Release the lock: 	 unlock(lock)

Lock() and Unlock() pseudo-code

 For now, to understand what these functions do, let’s
view them as pseudo-code

unlock(lock_t *lock) {
 *lock = UNLOCKED
}

// “Magically” thread-safe
lock(lock_t *lock) {

while (*lock == LOCKED) {
	 // spin

}
 *lock = LOCKED
}

 We will understand how to implement the above in the next set of
lecture notes…

 Clearly, lock() isn’t thread-safe as written above
 Anybody sees why?

Lock Typical Use Case: Updates

 The typical (but not the only) use case for
locks and creating critical sections is when
multiple threads need to update the same
memory locations

 All lines of code that update a memory location
must then be put inside a critical section

 And typically, one uses different locks for
different memory location

 Let’s do a straightforward in-class activity
here…

In-Class Activity
 Consider the following code fragments, assuming a bunch of threads

that call f() and g() over and over
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put

in the calls to lock/unlock…

//global variables
int x=100, y=0;

void f() {
x += 2;
y ++;

}

void g() {
x++;

}

In-Class Activity
 Consider the following code fragments, assuming a bunch of threads

that call f() and g() over and over
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put

in the calls to lock/unlock…

//global variables
int x=100, y=0;
lock_t lock1, lock2;

void f() {
lock(lock1);
x += 2;
unlock(lock1);
lock(lock2);
y ++;
unlock(lock2);

}

void g() {
 lock(lock1);

x++;
unlock(lock1);

}

Two locks
Two critical sections

In-Class Activity
 An implementation with a single lock like this is

correct, but not concurrent!!
 While a thread updates x, no thread can update y
 May defeat the purpose of using threads

//global variables
int x=100, y=0;
lock_t lock1, lock2;

void f() {
lock(lock1);
x += 2;
y ++;
unlock(lock1);

}

void g() {
 lock(lock1);

x++;
unlock(lock1);

}

In-Class Activity

 An implementation with three locks is incorrect
 Two threads could be updating variable x at the same

time (one going “x += 2” and the other doing “x++”)

//global variables
int x=100, y=0;
lock_t lock1, lock2, lock3;

void f() {
lock(lock1);
x += 2;
unlock(lock1);
lock(lock2);
y ++;
unlock(lock2);

}

void g() {
 lock(lock3);

x++;
unlock(lock3);

}

Locks for Data Structures
 A classical use of locks is to protect updates of

linked data structures
 Example: Queue and threads

 Consider a program that maintains a queue (of ints >0)
 Thread #1 (Producer) adds elements to the queue
 Thread #2 (Consumer) removes elements from the queue
 We will see soon why this is very useful

	 Thread #1
	 int x;
	 while(1) {
	 x = generate();
	 insert(list,x);
	 }

	 Thread #2
	 int x;
	 while(1) {
	 x = remove(list);
	 }

Queue Implementation
struct queue_t {	 	 	 struct queue_item_t {
 queue_item *first;	 	 int value;
 queue_item *last;	 	 queue_item *prev;
};	 	 	 	 	 queue_item *next;
	 	 	 	 	 };

void insert (queue_t q, int x) {
 queue_item_t *item = (queue_item_t *) calloc(1, sizeof(queue_item_t));
 item->value = x;
 item->next = q->first;
 if (item->next)
 item->next->prev = item;
 q->first = item;
 if (! q->last) q->last = item;
}

Queue Implementation
int remove (queue_t q) {
	 queue_item_t *item;
	 int x;
	 if (! q->last) return -1; // -1 means “no item”
	 x = q->last->value;
	 item = q->last->prev;
 	 free(q->last);
	 if (item) {
	 item->next = NULL;
	 }
	 q->last = item;
 if (q->last == NULL) {
	 q->first = NULL;
	 }
	 return x;
}

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

context
switch

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove
	 	 ...
	 	 item = q->last->prev; // returns NULL
	 	 free(q->last);
	 	 if (item) {
	 	 . . .
	 	

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove
	 	 ...
	 	 item = q->last->prev; // returns NULL
	 	 free(q->last);
	 	 if (item) {
	 	 . . .
	 	

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove
	 	 ...
	 	 item = q->last->prev; // returns NULL
	 	 free(q->last);
	 	 if (item) {
	 	 . . .
	 	

3

context
switch

Freed Memory

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer resumes
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

Freed Memory

Freed Memory
Access

So what?
 In this example, the producer updates memory that has been

de-allocated by another thread!
 In Java we would get an exception once in a while
 C doesn’t zero out or track freed memory and we would get a

segmentation fault once in a while
 A third thread could have done a malloc and be given the memory

that has been de-allocated
 Then the producer could modify the memory used by that third

thread for whatever purpose!
 This could cause a bug in that third thread that could be very

difficult to track (because that thread may have nothing to do with
the queue!)

 Basically, if you have threads and you get unexplained
segmentation faults, you may have a race condition

 Even if the segmentation fault occurs in a part of the code that has
nothing to do, time- or space-wise, with the relevant part of the code!

 Let’s use locks and fix it!

Simple Solution

	 	 	 lock_t lock; 	// global variable

void producer() {	 	 	 void consumer() {
 int x;	 	 	 	 	 int x;	
 while(1) {	 	 	 	 while(1) {
	 x = generate();	 	 	 lock(lock);
 lock(lock);	 	 	 x = remove(list);
 insert(list,x);	 	 	 unlock(lock);
 unlock(lock);	 	 	 process(x);
 }		 	 	 	 }
}	 	 	 	 	 	 }

Simple Solution

	 	 	 lock_t lock; 	// global variable

void producer() {	 	 	 void consumer() {
 int x;	 	 	 	 	 int x;	
 while(1) {	 	 	 	 while(1) {
	 x = generate();	 	 	 lock(lock);
 lock(lock);	 	 	 x = remove(list);
 insert(list,x);	 	 	 unlock(lock);
 unlock(lock);	 	 	 process(x);
 }		 	 	 	 }
}	 	 	 	 	 	 }

While one thread is modifying the queue

(inserting or removing), no other thread can

insert or remove

Simple Solution
 Important: we use a single lock that is referenced

and used by both threads
 All threads have to wait for the same “toilet”

 The solution is simple: place lock()/unlock() calls
around all calls that manipulate the queue

 Sometimes determining what calls and code segments
modify a data structure requires some thought

 The critical section is then the whole queue
implementation

 This is the typical strategy when using a non-thread-
safe implementation of the queue abstract data type

 To produce a thread-safe implementation of the
queue, one needs to create critical sections within
the queue methods

Thread Safe Queue

void insert (queue_t q, int x) {
 lock(q.lock);
	 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t));
	 item->value = x;
	 item->next = q->first;
	 if (item->next)
 item->next->prev = item;
	 q->first = item;
	 if (! q->last) q->last = item;
 unlock(q.lock);
}

struct queue_t {	 	 	 	 	 struct queue_item_t {
 queue_item *first;	 	 	 	 int value;
 queue_item *last;	 	 	 	 queue_item *prev;
 lock_t *lock; // each queue has its lock	 	 queue_item *next;
};	 	 	 	 	 	 	 };

Thread-Safe Queue
int remove (queue_t q) {
	 queue_item_t *item;
	 int x;
 lock(q.lock);
	 if (! q->last) return -1;
	 x = q->last->value;
	 item = q->last->prev;
 	 free(q->last);
	 if (item) { item->next = NULL; }
	 q->last = item;
 if (q->last == NULL) {
	 q->first = NULL;
	 }
 unlock(q.lock);
	 return x;
}

Critical Sections and Performance
 An easy way to make code thread safe is to put a lot of

things in critical sections
 “I don’t really know what these functions do, I’ll use a single

lock and put all calls in a critical section”
 Problem: Critical sections reduce concurrency

 Because in a critical section there can be only one thread
 At the extreme, the code becomes purely sequential

 Great for correctness, but not desired for multi-core
performance and/or interactivity

 For better concurrency: make short critical sections
 Use many locks whenever possible to generate many shorter

independent critical sections rather than a few longer ones
 Threads can be in different critical sections at the same time

 Goal: one should put only what’s necessary between
lock() and unlock()

Better Thread Safe Queue
void insert (queue_t q, int x) {
	 // lock(q.lock);
	 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t));
	 item->value = x;
 	 lock(q.lock);
	 item->next = q->first;
	 if (item->next)
 item->next->prev = item;
	 q->first = item;
	 if (! q->last) q->last = item;
 unlock(q.lock);
}

taken outside
of the CS

A consumer can operate
on the queue while a
producer is allocating
memory for a new element
⇒ more concurrency

Good General Principles
 Try to make critical sections as short as possible
 Try to avoid critical sections by replicating or

splitting shared data whenever possible
 It may be that data structures can be

reorganized so that threads don’t step on
each others’ toes

Example: use two separate counters to avoid
the “lost update” problem in our first simple
example, and sum them up when both
threads have completed

 Let’s look at the two versions of code for
computing the sum of an array…

Sum Computation
// Global variables
lock_t lock;
int sum = 0;
int Array[1000];

// Thread #1
for (int i = 0; i < 500; i++) {
 lock(lock);
 sum += Array[i];
 unlock(lock);
}

// Thread #2
for (int i = 500; i < 1000; i++) {
 lock(lock);
 sum += Array[i];
 unlock(lock);
}

Version #1

 This code is very sequential
 Only the loop index updates

can be done concurrently
 All sum computations are

done sequentially
 lock() and unlock() are each

called 1000 times, which is
bad for performance due to
locking overhead

Sum Computation
// Global variables
lock_t lock;
int sum = 0;
int Array[1000];

// Thread #1
int sum1 = 0;
for (int i = 0; i < 500; i++) {
 sum1 += Array[i];
}
lock(lock)
sum += sum1;
unlock(lock)

// Thread #2
int sum2 = 0;
for (int i = 500; i < 1000; i++) {
 sum2 += Array[i];
}
lock(lock)
sum += sum2;
unlock(lock) Version #2

 Almost perfectly concurrent
 Only two additions are done

sequentially
 lock() and unlock() are each

called only twice

Performance Comparison on
my Laptop using Javafoo

10000 0.003 0.001

20000 0.006 0.001

40000 0.012 0.002

80000 0.013 0.004

160000 0.005 0.004

320000 0.01 0.005

640000 0.015 0.005

1280000 0.034 0.006

2560000 0.068 0.006

5120000 0.145 0.006

10240000 0.332 0.007

20480000 0.613 0.007

40960000 1.206 0.008

81920000 2.462 0.017

163840000 4.945 0.039

327680000 10.002 0.081

655360000 21.416 0.165

SE
CO

ND
S

0

7.5

15

22.5

30

ARRAY SIZE

SLOW IMPLEMENTATION FAST IMPLEMENTATION

1

Good General Principles
 It is often not a good idea to take the sequential

code and merely add lock()/unlock() calls around all
race-condition-prone statements

 One should rethink/reorganize the code so that
making it concurrent is easier and more efficient

 Or even better, design code with concurrency
in mind from the get go

 Mutual exclusion via locks is something you should try
to avoid if you can

 Much later in the semester we’ll talk about lock-
free concurrency

 If using locks is necessary, then you have to use them
sparingly (short critical sections, few critical sections,
few locks) and correctly

How Many Locks to Use?
 Try to use different locks for different data items

 See our queue example, in which we attached a different
lock to each queue

 One concern is that with many locks there is more
memory consumption and there may be more
overhead

 Say you have a 1GB array of 1-byte elements, and
30 threads updating the elements in whatever
sequence

 One lock for the whole array: no concurrency, tiny
memory consumption

 One lock per element: great concurrency, memory more
than doubled!

 One lock per 1K elements: perhaps a good compromise?

Common Misunderstanding
 Note that in the previous slide I wrote: “1 lock per

element”
 This may give the wrong impression that one

associates a lock to a zone of memory
 e.g., “you should lock that variable”
 e.g., “you don’t need any locks for that array”

 When we say “lock variable x” what we mean is: place
lock/unlock calls around each statement in the whole
code that updates variable x

 If the code is well-designed, then we shouldn’t have
update statements for a variable over the whole code

 e.g., if you code has tons of x++ all over the place, better to
have an increment() method inside of which you can place
the calls to lock / unlock once and for all

DeadLocks
 Deadlock: a common problem when synchronizing threads with
multiple locks

You write your program with many threads and locks, you
run it, and at some point, it’s stuck

 Deadlock can happen with nested critical sections
 Classic example (which can lead to a deadlock):

. . .
lock(lock1)
. . .
lock(lock2)
. . .
unlock(lock2)
. . .
unlock(lock1)
. . .

. . .
lock(lock2)
. . .
lock(lock1)
. . .
unlock(lock1)
. . .
unlock(lock2)
. . .

 See ICS 332 (Operating Systems)

Deadlocks
 The previous example is trivial
 But in practice code can become complex

and deadlocks do happen and require
careful debugging
 The calls to lock() and unlock() are not

always close to each other in the code
 We will discuss a case-study in a couple of

lectures that will highlight many thread
synchronization problems, including
deadlocks

Re-entrant (Recursive) Locks
 A lock is said to be re-entrant or recursive if a single thread can

acquire it multiple times
 Example: lock(A); lock(A); unlock(A); unlock(A)
 If the lock is not re-entrant the above code deadlocks
 Can be convenient for the following idiom (a thread-safe method

that calls another thread-safe method):

void f() {
 lock(A);
 ...
 g();
 unlock(A);
}

void g() {
 lock(A);
 ...
 unlock(A);
}

 By default, in Java, locks are re-entrant
 In C with PThread locks can be made re-entrant
 Some argue that re-entrant locks are a bad idea

Always Lock()-Unlock() on the
same thread!
 The typical usage of locks in a thread is to have a call to

lock() followed by a call to unlock()
 In most languages, a thread cannot call unlock() on a lock

that thread hasn’t acquired first
 And even if you could, it’s considered a HORRIBLE practice

 This is annoyingly “implementation-dependent”
 Java: “A Lock implementation will usually impose restrictions on

which thread can release a lock (typically only the holder of the
lock can release it) and may throw an (unchecked) exception if the
restriction is violated. Any restrictions and the exception type must
be documented by that Lock implementation.”

 C with Pthreads: “If a thread attempts to unlock a mutex that it has
not locked or a mutex which is unlocked, undefined behavior
results.”

 But a “good” system should throw an error, and you shouldn’t do it

Lock for non-Updates

 We have said that the typical use-case for
creating critical sections is to “protect”
updates to memory locations

 But there are many times when one needs to
put locks around things that seem atomic!

 This is pretty counter-intuitive, and it’s
complicated because it depends on what the
program does and what its intent is

 Let just see two simple examples….

Critical Section For Non-Update
 Consider the following code fragments assuming that:

 Thread #1 will call f() once
 Thread #2 will call g() once
 These are the only lines of code that reference variable x

//global variable
int x=100;

void f() {
x = 2;

}

void g() {
x++;

}

 The only two acceptable outcomes of this program are x=2 or x=3
 The “x++” statement is not atomic and we should protect it with a lock
 But what about the “x=2” statement? It’s atomic so we are fine????
 NO: if we don’t put a lock around “x=2” we could have:

 Thread #2 reads value 100 from RAM, and gets context-switched out
 Thread #1 sets x to 2 in RAM
 Thread #2 is context-switched back in, computes 101, and writes it to RAM
 We end up with a wrong execution!!

Critical Section For Non-Update
 Consider the following code fragments assuming that:

 Thread #1 will call f() once
 Thread #2 will call g() once
 These are the only lines of code that reference variable x

//global variable
int x=100;
lock_t lock1;

void f() {
lock(lock1);
x = 2;
lock(lock1);

}

void g() {
lock(lock1);
x++;
lock(lock1);

}

 This is one of the reasons concurrency is deemed difficult… it’s
often a bit counter-intuitive and requires careful thinking

 A lot of it comes from experience
 Let’s look at another example….

Is this Java Stack Thread-Safe?
classStack<E> {

 private E[] array =
 (E[]) new Object[SIZE];
 int index= -1;

 threadsafe void push(E val) {
 array[++index] = val;
 }

 threadsafe E pop() {
 return array[index--];
 }

 E peek() {
 return array[index];
 }

}

 Here we don’t have explicit
lock but assume the
language provides a
threadsafe keyword

 The idea was to not make
the peek() method thread
safe, because it just does a
memory access, which is
atomic

 Is this ok or not?

Is this Java Stack Thread-Safe?

classStack<E> {

 private E[] array =
 (E[]) new Object[SIZE];
 int index= -1;

 threadsafe void push(E val) {
 array[++index] = val;
 }

 threadsafe E pop() {
 return array[index--];
 }

 E peek() {
 return array[index];
 }

}

 Think about the code for push() in
“assembly”:

mov R1, [index]
inc R1
mov [index], R1
mul R1, 4
mov R2, array
add R2, R1
mov [R2], val
return

 The code for peek() is:
mov R3, [index]
mul R3, 4
mov R4, array
add R4, R3
return [R4]

 The blue code could be interleaved
anywhere in the red code!
(because peek() is not thread safe)

A Bad Interleaving

classStack<E> {

 private E[] array =
 (E[]) new Object[SIZE];
 int index= -1;

 threadsafe void push(E val) {
 array[++index] = val;
 }

 theadsafe E pop() {
 return array[index--];
 }

 E peek() {
 return array[index];
 }

}

mov R1, [index]
inc R1
mov [index], R1
mov R3, [index]
mul R4, 8
mov R4, array
add R4, R3
return [R4]
mul R1, 8
mov R2, array
add R2, R1
mov [R2], val
return

Peek() returns the
value array[index],
which is uninitialized!

Push() increments
index, and is about
to put data at
array[index]

 We MUST make the peek() method
thread safe, even though the code of
that method is only “reading data”

Conclusion
 To prevent race conditions one can use locks to create

critical sections
 Using locks requires care:

 Long critical sections reduce concurrency
 Calling lock()/unlock() has overhead
 Using too few locks reduces concurrency
 Using many locks requires memory
 Using locks can lead to deadlocks
 Sometimes one need to “lock” a section of code that

looks atomic

 Next up: How are locks implemented?
 But before that: Homework Assignment #3

 A “pencil and paper” assignment

