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Disclaimer

 The first few slides are a review of ICS332 
material 

 But this material is so important, that going 
over it again is a good idea 
 Especially if ICS332 was a few semesters ago



Thread Safety
 In the previous module we’ve talked about 

the need for thread safety 
 i.e., the need to have threads read/write 

the same memory locations without 
race condition 

 In this module we talk about how we can 
make a piece of code thread-safe 

 The most basic concept for achieving thread 
safety is called a Lock



Atomicity and mutual exclusion
 What we need is a mechanism that makes a sequence of 

operations atomic 
 Atomicity is really mutual exclusion 

 Whenever the sequence is initiated by thread A, we are 
guaranteed that no other thread can initiate it before thread A 
completes it  

 If you’ve taken databases, you can think of this is a kind of 
transaction 

 This is a great idea, but how can we specify this in a 
program?  

 Answer: critical sections 
 A critical section is a section of code in which only one 

thread is allowed at a time 
 Not necessarily a contiguous section of code



Critical Sections
 Two critical sections in a program 

 No two threads can be in “blue” code at the same 
time 

 No two threads can be in “red” code at the same time 
 We could have one thread doing “blue”, one thread 

doing “red”, and many threads doing anything else



Critical Sections
 One would like to write code that looks like this: 

	 	 	 while(true) { 
              	    enter_CS(blue) 
              	    x++ 
              	    leave_CS(blue) 
            	 } 

 We would like to have the following properties 
 Mutual exclusion: only one thread can be inside the CS 
 No deadlocks: one of the competing threads will enter 

the CS 
 No unnecessary delays: a thread enters the CS 

immediately if no other thread is competing for it 
 Eventual entry: a thread that tries to enter the critical 

CS will enter it at some point



Critical Sections with Locks
 The concept of a critical section is binary 

Either 0 threads are in the critical section 
Or 1 thread is in the critical section 

 Therefore, the critical section can be “controlled” with a 
boolean variable 

 This variable is called a lock 
 Can take one of two values: “locked” or “unlocked” 
 Initially set to “unlocked” 

 Just like going to the toilet (if you’ve taken ICS332 from me, 
perhaps you remember this) 

While the lock is “red” get in the waiting line 
When the lock becomes “green” if you’re first in line go in 

and set the lock to “red” 
When you leave, set the lock to “green”



Locks
 Different languages have different ways to 

declare/use locks 
 We’ll see ways to do it in Java and C/C++ 

 Let’s use a C-like syntax for now: 
 Declaration: 	 lock_t  *lock  = new_lock()	

	 (initialized to “unlocked”) 
 Acquire the lock: 	 lock(lock) 
 Release the lock: 	 unlock(lock)



Lock() and Unlock() pseudo-code

 For now, to understand what these functions do, let’s 
view them as pseudo-code

unlock(lock_t *lock) { 
    *lock = UNLOCKED 
}

// “Magically” thread-safe 
lock(lock_t *lock) { 

while (*lock == LOCKED) { 
	 // spin  

} 
    *lock = LOCKED 
}

 We will understand how to implement the above in the next set of 
lecture notes… 

 Clearly, lock() isn’t thread-safe as written above 
 Anybody sees why?



Lock Typical Use Case: Updates

 The typical (but not the only) use case for 
locks and creating critical sections is when 
multiple threads need to update the same 
memory locations 

 All lines of code that update a memory location 
must then be put inside a critical section 

 And typically, one uses different locks for 
different memory location 

 Let’s do a straightforward in-class activity 
here…



In-Class Activity
 Consider the following code fragments, assuming a bunch of threads 

that call f() and g() over and over 
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put 

in the calls to lock/unlock…

//global variables 
int x=100, y=0;

void f() { 
x += 2; 
y ++; 

}

void g() { 
x++; 

}



In-Class Activity
 Consider the following code fragments, assuming a bunch of threads 

that call f() and g() over and over  
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put 

in the calls to lock/unlock…

//global variables 
int x=100, y=0; 
lock_t lock1, lock2;

void f() { 
lock(lock1); 
x += 2; 
unlock(lock1); 
lock(lock2); 
y ++; 
unlock(lock2); 

}

void g() { 
   lock(lock1); 

x++; 
unlock(lock1); 

}

Two locks 
Two critical sections



In-Class Activity
 An implementation with a single lock like this is 

correct, but not concurrent!! 
 While a thread updates x, no thread can update y 
 May defeat the purpose of using threads

//global variables 
int x=100, y=0; 
lock_t lock1, lock2;

void f() { 
lock(lock1); 
x += 2; 
y ++; 
unlock(lock1); 

}

void g() { 
   lock(lock1); 

x++; 
unlock(lock1); 

}



In-Class Activity

 An implementation with three locks is incorrect 
 Two threads could be updating variable x at the same 

time (one going “x += 2” and the other doing “x++”)

//global variables 
int x=100, y=0; 
lock_t lock1, lock2,   lock3;

void f() { 
lock(lock1); 
x += 2; 
unlock(lock1); 
lock(lock2); 
y ++; 
unlock(lock2); 

}

void g() { 
   lock(lock3); 

x++; 
unlock(lock3); 

}



Locks for Data Structures
 A classical use of locks is to protect updates of 

linked data structures 
 Example: Queue and threads 

 Consider a program that maintains a queue (of ints >0) 
 Thread #1 (Producer) adds elements to the queue 
 Thread #2 (Consumer) removes elements from the queue 
 We will see soon why this is very useful

	 Thread #1 
	 int x; 
	 while(1) { 
	     x = generate(); 
	     insert(list,x);  
	 }

	 Thread #2 
	 int x; 
	 while(1) { 
	     x = remove(list); 
	 }



Queue Implementation
struct queue_t {	 	 	 struct queue_item_t { 
    queue_item *first;	 	     int value; 
    queue_item *last;	 	     queue_item *prev; 
};	 	 	 	 	     queue_item *next; 
	 	 	 	 	 }; 

void insert (queue_t q, int x) {  
    queue_item_t *item = (queue_item_t *) calloc(1, sizeof(queue_item_t)); 
    item->value = x; 
    item->next = q->first; 
    if (item->next)  
        item->next->prev = item; 
    q->first = item; 
    if (! q->last)  q->last = item; 
}



Queue Implementation
int remove (queue_t q) { 
	 queue_item_t *item; 
	 int x; 
	 if (! q->last) return -1;  // -1 means “no item” 
	 x = q->last->value; 
	 item = q->last->prev; 
 	 free(q->last); 
	 if (item) { 
	     item->next = NULL; 
	 }  
	 q->last = item; 
     if (q->last == NULL) { 
	     q->first = NULL; 
	 } 
	 return x; 
}



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3

context 
switch



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove 
	 	 ... 
	 	 item = q->last->prev;   // returns NULL 
	   	 free(q->last); 
	 	 if (item) { 
	 	 . . . 
	 	

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove 
	 	 ... 
	 	 item = q->last->prev;   // returns NULL 
	   	 free(q->last); 
	 	 if (item) { 
	 	 . . . 
	 	

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove 
	 	 ... 
	 	 item = q->last->prev;   // returns NULL 
	   	 free(q->last); 
	 	 if (item) { 
	 	 . . . 
	 	

3

context 
switch

Freed Memory



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer resumes
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3

Freed Memory

Freed Memory 
Access



So what?
 In this example, the producer updates memory that has been 

de-allocated by another thread! 
 In Java we would get an exception once in a while 
 C doesn’t zero out or track freed memory and we would get a 

segmentation fault once in a while 
 A third thread could have done a malloc and be given the memory 

that has been de-allocated 
 Then the producer could modify the memory used by that third 

thread for whatever purpose! 
 This could cause a bug in that third thread that could be very 

difficult to track (because that thread may have nothing to do with 
the queue!) 

 Basically, if you have threads and you get unexplained 
segmentation faults, you may have a race condition 

 Even if the segmentation fault occurs in a part of the code that has 
nothing to do, time- or space-wise, with the relevant part of the code! 

 Let’s use locks and fix it!



Simple Solution

	 	 	 lock_t lock;  	// global variable 

void producer() {	 	 	 void consumer() { 
  int x;	 	 	 	 	   int x;	 
  while(1) {	 	 	  	   while(1) { 
	 x = generate();	 	 	      lock(lock);  
    lock(lock);	 	 	      x = remove(list); 
    insert(list,x);	 	     	      unlock(lock); 
    unlock(lock);	 	     	      process(x); 
  }		 	 	 	              } 
}	 	 	 	 	   	  }   



Simple Solution

	 	 	 lock_t lock;  	// global variable 

void producer() {	 	 	 void consumer() { 
  int x;	 	 	 	 	   int x;	 
  while(1) {	 	 	  	   while(1) { 
	 x = generate();	 	 	      lock(lock);  
    lock(lock);	 	 	      x = remove(list); 
    insert(list,x);	 	     	      unlock(lock); 
    unlock(lock);	 	     	      process(x); 
  }		 	 	 	              } 
}	 	 	 	 	   	  }   

While one thread is modifying the queue 

(inserting or removing), no other thread can 

insert or remove



Simple Solution
 Important: we use a single lock that is referenced 

and used by both threads 
 All threads have to wait for the same “toilet” 

 The solution is simple: place lock()/unlock() calls 
around all calls that manipulate the queue 

 Sometimes determining what calls and code segments 
modify a data structure requires some thought 

 The critical section is then the whole queue 
implementation 

 This is the typical strategy when using a non-thread-
safe implementation of the queue abstract data type 

 To produce a thread-safe implementation of the 
queue, one needs to create critical sections within 
the queue methods



Thread Safe Queue

void insert (queue_t q, int x) { 
    lock(q.lock);   
	 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t)); 
	 item->value = x; 
	 item->next = q->first; 
	 if (item->next)  
        item->next->prev = item; 
	 q->first = item; 
	 if (! q->last)  q->last = item; 
    unlock(q.lock); 
}

struct queue_t {	 	 	 	 	 struct queue_item_t { 
    queue_item *first;	 	     	     	     int value; 
    queue_item *last;	 	     	     	     queue_item *prev; 
    lock_t *lock; // each queue has its lock	     	     queue_item *next; 
};	 	 	 	 	 	 	 };



Thread-Safe Queue
int remove (queue_t q) { 
	 queue_item_t *item; 
	 int x; 
     lock(q.lock); 
	 if (! q->last) return -1; 
	 x = q->last->value; 
	 item = q->last->prev; 
 	 free(q->last); 
	 if (item) {  item->next = NULL;  }  
	 q->last = item; 
     if (q->last == NULL) { 
	     q->first = NULL; 
	 } 
     unlock(q.lock); 
	 return x; 
}



Critical Sections and Performance
 An easy way to make code thread safe is to put a lot of 

things in critical sections 
 “I don’t really know what these functions do, I’ll use a single 

lock and put all calls in a critical section” 
 Problem: Critical sections reduce concurrency 

 Because in a critical section there can be only one thread 
 At the extreme, the code becomes purely sequential 

 Great for correctness, but not desired for multi-core 
performance and/or interactivity 

 For better concurrency: make short critical sections 
 Use many locks whenever possible to generate many shorter 

independent critical sections rather than a few longer ones 
 Threads can be in different critical sections at the same time 

 Goal: one should put only what’s necessary between 
lock() and unlock()



Better Thread Safe Queue
void insert (queue_t q, int x) { 
	 // lock(q.lock); 
	 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t)); 
	 item->value = x; 
  	 lock(q.lock); 
	 item->next = q->first; 
	 if (item->next)  
        item->next->prev = item; 
	 q->first = item; 
	 if (! q->last)  q->last = item; 
    unlock(q.lock); 
}

taken outside 
of the CS

A consumer can operate 
on the queue while a 
producer is allocating 
memory for a new element 
⇒ more concurrency



Good General Principles
 Try to make critical sections as short as possible 
 Try to avoid critical sections by replicating or 

splitting shared data whenever possible 
 It may be that data structures can be 

reorganized so that threads don’t step on 
each others’ toes 

Example: use two separate counters to avoid 
the “lost update” problem in our first simple 
example, and sum them up when both 
threads have completed 

 Let’s look at the two versions of code for 
computing the sum of an array…



Sum Computation
// Global variables 
lock_t lock; 
int sum = 0; 
int Array[1000]; 

// Thread #1 
for (int i = 0; i < 500; i++) { 
  lock(lock); 
  sum += Array[i]; 
  unlock(lock); 
} 

// Thread #2 
for (int i = 500; i < 1000; i++) { 
  lock(lock); 
  sum += Array[i]; 
  unlock(lock); 
}

Version #1

 This code is very sequential 
 Only the loop index updates 

can be done concurrently 
 All sum computations are 

done sequentially 
 lock() and unlock() are each 

called 1000 times, which is 
bad for performance due to 
locking overhead



Sum Computation
// Global variables 
lock_t lock; 
int sum = 0; 
int Array[1000]; 

// Thread #1 
int sum1 = 0; 
for (int i = 0; i < 500; i++) { 
  sum1 += Array[i]; 
} 
lock(lock) 
sum += sum1; 
unlock(lock) 

// Thread #2 
int sum2 = 0; 
for (int i = 500; i < 1000; i++) { 
  sum2 += Array[i]; 
} 
lock(lock) 
sum += sum2; 
unlock(lock) Version #2

 Almost perfectly concurrent 
 Only two additions are done 

sequentially 
 lock() and unlock() are each 

called only twice



Performance Comparison on  
my Laptop using Javafoo

10000 0.003 0.001

20000 0.006 0.001

40000 0.012 0.002

80000 0.013 0.004

160000 0.005 0.004

320000 0.01 0.005

640000 0.015 0.005

1280000 0.034 0.006

2560000 0.068 0.006

5120000 0.145 0.006

10240000 0.332 0.007

20480000 0.613 0.007

40960000 1.206 0.008

81920000 2.462 0.017

163840000 4.945 0.039

327680000 10.002 0.081

655360000 21.416 0.165
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Good General Principles
 It is often not a good idea to take the sequential 

code and merely add lock()/unlock() calls around all 
race-condition-prone statements 

 One should rethink/reorganize the code so that 
making it concurrent is easier and more efficient 

 Or even better, design code with concurrency 
in mind from the get go 

 Mutual exclusion via locks is something you should try 
to avoid if you can 

 Much later in the semester we’ll talk about lock-
free concurrency 

 If using locks is necessary, then you have to use them 
sparingly (short critical sections, few critical sections, 
few locks) and correctly



How Many Locks to Use?
 Try to use different locks for different data items 

 See our queue example, in which we attached a different 
lock to each queue 

 One concern is that with many locks there is more 
memory consumption and there may be more 
overhead 

 Say you have a 1GB array of 1-byte elements, and 
30 threads updating the elements in whatever 
sequence 

 One lock for the whole array: no concurrency, tiny 
memory consumption 

 One lock per element: great concurrency, memory more 
than doubled! 

 One lock per 1K elements: perhaps a good compromise?



Common Misunderstanding
 Note that in the previous slide I wrote: “1 lock per 

element” 
 This may give the wrong impression that one 

associates a lock to a zone of memory 
 e.g., “you should lock that variable” 
 e.g., “you don’t need any locks for that array” 

 When we say “lock variable x” what we mean is: place 
lock/unlock calls around each statement in the whole 
code that updates variable x 

 If the code is well-designed, then we shouldn’t have 
update statements for a variable over the whole code 

 e.g., if you code has tons of x++ all over the place, better to 
have an increment() method inside of which you can place 
the calls to lock / unlock once and for all



DeadLocks
 Deadlock: a common problem when synchronizing threads with 
multiple locks 

You write your program with many threads and locks, you 
run it, and at some point, it’s stuck 

 Deadlock can happen with nested critical sections 
 Classic example (which can lead to a deadlock):

. . . 
lock(lock1) 
. . . 
lock(lock2) 
. . . 
unlock(lock2) 
. . . 
unlock(lock1) 
. . .

. . . 
lock(lock2) 
. . . 
lock(lock1) 
. . . 
unlock(lock1) 
. . . 
unlock(lock2) 
. . .

 See ICS 332 (Operating Systems)



Deadlocks
 The previous example is trivial 
 But in practice code can become complex 

and deadlocks do happen and require 
careful debugging 
 The calls to lock() and unlock() are not 

always close to each other in the code 
 We will discuss a case-study in a couple of 

lectures that will highlight many thread 
synchronization problems, including 
deadlocks



Re-entrant (Recursive) Locks
 A lock is said to be re-entrant or recursive if a single thread can 

acquire it multiple times 
 Example: lock(A); lock(A); unlock(A); unlock(A) 
 If the lock is not re-entrant the above code deadlocks 
 Can be convenient for the following idiom (a thread-safe method 

that calls another thread-safe method):

void f() { 
  lock(A); 
  ... 
  g(); 
  unlock(A); 
}

void g() { 
  lock(A); 
  ... 
  unlock(A); 
}

 By default, in Java, locks are re-entrant 
 In C with PThread locks can be made re-entrant 
 Some argue that re-entrant locks are a bad idea



Always Lock()-Unlock() on the 
same thread!
 The typical usage of locks in a thread is to have a call to 

lock() followed by a call to unlock() 
 In most languages, a thread cannot call unlock() on a lock 

that thread hasn’t acquired first 
 And even if you could, it’s considered a HORRIBLE practice 

 This is annoyingly “implementation-dependent” 
 Java: “A Lock implementation will usually impose restrictions on 

which thread can release a lock (typically only the holder of the 
lock can release it) and may throw an (unchecked) exception if the 
restriction is violated. Any restrictions and the exception type must 
be documented by that Lock implementation.” 

 C with Pthreads: “If a thread attempts to unlock a mutex that it has 
not locked or a mutex which is unlocked, undefined behavior 
results.” 

 But a “good” system should throw an error, and you shouldn’t do it



Lock for non-Updates

 We have said that the typical use-case for 
creating critical sections is to “protect” 
updates to memory locations 

 But there are many times when one needs to 
put locks around things that seem atomic! 

 This is pretty counter-intuitive, and it’s 
complicated because it depends on what the 
program does and what its intent is 

 Let just see two simple examples….



Critical Section For Non-Update
 Consider the following code fragments assuming that: 

 Thread #1 will call f() once 
 Thread #2 will call g() once 
 These are the only lines of code that reference variable x

//global variable 
int x=100;

void f() { 
x = 2; 

}

void g() { 
x++; 

}

 The only two acceptable outcomes of this program are x=2 or x=3 
 The “x++” statement is not atomic and we should protect it with a lock  
 But what about the “x=2” statement? It’s atomic so we are fine???? 
 NO: if we don’t put a lock around “x=2” we could have: 

 Thread #2 reads value 100 from RAM, and gets context-switched out 
 Thread #1 sets x to 2 in RAM 
 Thread #2 is context-switched back in, computes 101, and writes it to RAM 
 We end up with a wrong execution!!



Critical Section For Non-Update
 Consider the following code fragments assuming that: 

 Thread #1 will call f() once 
 Thread #2 will call g() once 
 These are the only lines of code that reference variable x

//global variable 
int x=100; 
lock_t lock1;

void f() { 
lock(lock1); 
x = 2; 
lock(lock1); 

}

void g() { 
lock(lock1); 
x++; 
lock(lock1); 

}

 This is one of the reasons concurrency is deemed difficult… it’s 
often a bit counter-intuitive and requires careful thinking 

 A lot of it comes from experience 
 Let’s look at another example….



Is this Java Stack Thread-Safe?
classStack<E> {

  private E[] array = 
    (E[]) new Object[SIZE];
  int index= -1;

  threadsafe void push(E val) {
    array[++index] = val;
  }

  threadsafe E pop() { 
    return array[index--];
  }
  
  E peek() {
    return array[index];
  }

}

 Here we don’t have explicit 
lock but assume the 
language provides a 
threadsafe keyword 

 The idea was to not make 
the peek() method thread 
safe, because it just does a 
memory access, which is 
atomic 

 Is this ok or not?



Is this Java Stack Thread-Safe?

classStack<E> {

  private E[] array = 
    (E[]) new Object[SIZE];
  int index= -1;

  threadsafe void push(E val) {
    array[++index] = val;
  }

  threadsafe E pop() { 
    return array[index--];
  }
  
  E peek() {
    return array[index];
  }

}

 Think about the code for push() in 
“assembly”: 

mov R1, [index]
inc R1
mov [index], R1
mul R1, 4
mov R2, array
add R2, R1
mov [R2], val
return

 The code for peek() is: 
mov R3, [index]
mul R3, 4
mov R4, array
add R4, R3
return [R4]

 The blue code could be interleaved 
anywhere in the red code! 
(because peek() is not thread safe)



A Bad Interleaving

classStack<E> {

  private E[] array = 
    (E[]) new Object[SIZE];
  int index= -1;

  threadsafe void push(E val) {
    array[++index] = val;
  }

  theadsafe E pop() { 
    return array[index--];
  }
  
  E peek() {
    return array[index];
  }

}

mov R1, [index]
inc R1
mov [index], R1
mov R3, [index]
mul R4, 8
mov R4, array
add R4, R3
return [R4]
mul R1, 8
mov R2, array
add R2, R1
mov [R2], val
return

Peek() returns the 
value array[index], 
which  is uninitialized!

Push() increments 
index, and is about 
to put data at 
array[index]

 We MUST make the peek() method 
thread safe, even though the code of 
that method is only “reading data”



Conclusion
 To prevent race conditions one can use locks to create 

critical sections 
 Using locks requires care: 

 Long critical sections reduce concurrency 
 Calling lock()/unlock() has overhead 
 Using too few locks reduces concurrency 
 Using many locks requires memory 
 Using locks can lead to deadlocks 
 Sometimes one need to “lock” a section of code that 

looks atomic 

 Next up: How are locks implemented? 
 But before that: Homework Assignment #3 

 A “pencil and paper” assignment


