
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Locks: Principles

Disclaimer

 The first few slides are a review of ICS332
material

 But this material is so important, that going
over it again is a good idea
 Especially if ICS332 was a few semesters ago

Thread Safety
 In the previous module we’ve talked about

the need for thread safety
 i.e., the need to have threads read/write

the same memory locations without
race condition

 In this module we talk about how we can
make a piece of code thread-safe

 The most basic concept for achieving thread
safety is called a Lock

Atomicity and mutual exclusion
 What we need is a mechanism that makes a sequence of

operations atomic
 Atomicity is really mutual exclusion

 Whenever the sequence is initiated by thread A, we are
guaranteed that no other thread can initiate it before thread A
completes it

 If you’ve taken databases, you can think of this is a kind of
transaction

 This is a great idea, but how can we specify this in a
program?

 Answer: critical sections
 A critical section is a section of code in which only one

thread is allowed at a time
 Not necessarily a contiguous section of code

Critical Sections
 Two critical sections in a program

 No two threads can be in “blue” code at the same
time

 No two threads can be in “red” code at the same time
 We could have one thread doing “blue”, one thread

doing “red”, and many threads doing anything else

Critical Sections
 One would like to write code that looks like this:

 while(true) {
 enter_CS(blue)
 x++
 leave_CS(blue)
 }

 We would like to have the following properties
 Mutual exclusion: only one thread can be inside the CS
 No deadlocks: one of the competing threads will enter

the CS
 No unnecessary delays: a thread enters the CS

immediately if no other thread is competing for it
 Eventual entry: a thread that tries to enter the critical

CS will enter it at some point

Critical Sections with Locks
 The concept of a critical section is binary

Either 0 threads are in the critical section
Or 1 thread is in the critical section

 Therefore, the critical section can be “controlled” with a
boolean variable

 This variable is called a lock
 Can take one of two values: “locked” or “unlocked”
 Initially set to “unlocked”

 Just like going to the toilet (if you’ve taken ICS332 from me,
perhaps you remember this)

While the lock is “red” get in the waiting line
When the lock becomes “green” if you’re first in line go in

and set the lock to “red”
When you leave, set the lock to “green”

Locks
 Different languages have different ways to

declare/use locks
 We’ll see ways to do it in Java and C/C++

 Let’s use a C-like syntax for now:
 Declaration: lock_t *lock = new_lock()

 (initialized to “unlocked”)
 Acquire the lock: lock(lock)
 Release the lock: unlock(lock)

Lock() and Unlock() pseudo-code

 For now, to understand what these functions do, let’s
view them as pseudo-code

unlock(lock_t *lock) {
 *lock = UNLOCKED
}

// “Magically” thread-safe
lock(lock_t *lock) {

while (*lock == LOCKED) {
 // spin

}
 *lock = LOCKED
}

 We will understand how to implement the above in the next set of
lecture notes…

 Clearly, lock() isn’t thread-safe as written above
 Anybody sees why?

Lock Typical Use Case: Updates

 The typical (but not the only) use case for
locks and creating critical sections is when
multiple threads need to update the same
memory locations

 All lines of code that update a memory location
must then be put inside a critical section

 And typically, one uses different locks for
different memory location

 Let’s do a straightforward in-class activity
here…

In-Class Activity
 Consider the following code fragments, assuming a bunch of threads

that call f() and g() over and over
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put

in the calls to lock/unlock…

//global variables
int x=100, y=0;

void f() {
x += 2;
y ++;

}

void g() {
x++;

}

In-Class Activity
 Consider the following code fragments, assuming a bunch of threads

that call f() and g() over and over
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put

in the calls to lock/unlock…

//global variables
int x=100, y=0;
lock_t lock1, lock2;

void f() {
lock(lock1);
x += 2;
unlock(lock1);
lock(lock2);
y ++;
unlock(lock2);

}

void g() {
 lock(lock1);

x++;
unlock(lock1);

}

Two locks
Two critical sections

In-Class Activity
 An implementation with a single lock like this is

correct, but not concurrent!!
 While a thread updates x, no thread can update y
 May defeat the purpose of using threads

//global variables
int x=100, y=0;
lock_t lock1, lock2;

void f() {
lock(lock1);
x += 2;
y ++;
unlock(lock1);

}

void g() {
 lock(lock1);

x++;
unlock(lock1);

}

In-Class Activity

 An implementation with three locks is incorrect
 Two threads could be updating variable x at the same

time (one going “x += 2” and the other doing “x++”)

//global variables
int x=100, y=0;
lock_t lock1, lock2, lock3;

void f() {
lock(lock1);
x += 2;
unlock(lock1);
lock(lock2);
y ++;
unlock(lock2);

}

void g() {
 lock(lock3);

x++;
unlock(lock3);

}

Locks for Data Structures
 A classical use of locks is to protect updates of

linked data structures
 Example: Queue and threads

 Consider a program that maintains a queue (of ints >0)
 Thread #1 (Producer) adds elements to the queue
 Thread #2 (Consumer) removes elements from the queue
 We will see soon why this is very useful

 Thread #1
 int x;
 while(1) {
 x = generate();
 insert(list,x);
 }

 Thread #2
 int x;
 while(1) {
 x = remove(list);
 }

Queue Implementation
struct queue_t { struct queue_item_t {
 queue_item *first; int value;
 queue_item *last; queue_item *prev;
}; queue_item *next;
 };

void insert (queue_t q, int x) {
 queue_item_t *item = (queue_item_t *) calloc(1, sizeof(queue_item_t));
 item->value = x;
 item->next = q->first;
 if (item->next)
 item->next->prev = item;
 q->first = item;
 if (! q->last) q->last = item;
}

Queue Implementation
int remove (queue_t q) {
 queue_item_t *item;
 int x;
 if (! q->last) return -1; // -1 means “no item”
 x = q->last->value;
 item = q->last->prev;
 free(q->last);
 if (item) {
 item->next = NULL;
 }
 q->last = item;
 if (q->last == NULL) {
 q->first = NULL;
 }
 return x;
}

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

context
switch

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove
 ...
 item = q->last->prev; // returns NULL
 free(q->last);
 if (item) {
 . . .

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove
 ...
 item = q->last->prev; // returns NULL
 free(q->last);
 if (item) {
 . . .

3

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove
 ...
 item = q->last->prev; // returns NULL
 free(q->last);
 if (item) {
 . . .

3

context
switch

Freed Memory

What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer resumes
queue_item_t *item = calloc(...)
item->value = x;
item->next = q->first;
if (item->next)
 item->next->prev = item;
q->first = item;
if (! q->last)
 q->last = item;

3

Freed Memory

Freed Memory
Access

So what?
 In this example, the producer updates memory that has been

de-allocated by another thread!
 In Java we would get an exception once in a while
 C doesn’t zero out or track freed memory and we would get a

segmentation fault once in a while
 A third thread could have done a malloc and be given the memory

that has been de-allocated
 Then the producer could modify the memory used by that third

thread for whatever purpose!
 This could cause a bug in that third thread that could be very

difficult to track (because that thread may have nothing to do with
the queue!)

 Basically, if you have threads and you get unexplained
segmentation faults, you may have a race condition

 Even if the segmentation fault occurs in a part of the code that has
nothing to do, time- or space-wise, with the relevant part of the code!

 Let’s use locks and fix it!

Simple Solution

 lock_t lock; // global variable

void producer() { void consumer() {
 int x; int x;
 while(1) { while(1) {
 x = generate(); lock(lock);
 lock(lock); x = remove(list);
 insert(list,x); unlock(lock);
 unlock(lock); process(x);
 } }
} }

Simple Solution

 lock_t lock; // global variable

void producer() { void consumer() {
 int x; int x;
 while(1) { while(1) {
 x = generate(); lock(lock);
 lock(lock); x = remove(list);
 insert(list,x); unlock(lock);
 unlock(lock); process(x);
 } }
} }

While one thread is modifying the queue

(inserting or removing), no other thread can

insert or remove

Simple Solution
 Important: we use a single lock that is referenced

and used by both threads
 All threads have to wait for the same “toilet”

 The solution is simple: place lock()/unlock() calls
around all calls that manipulate the queue

 Sometimes determining what calls and code segments
modify a data structure requires some thought

 The critical section is then the whole queue
implementation

 This is the typical strategy when using a non-thread-
safe implementation of the queue abstract data type

 To produce a thread-safe implementation of the
queue, one needs to create critical sections within
the queue methods

Thread Safe Queue

void insert (queue_t q, int x) {
 lock(q.lock);
 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t));
 item->value = x;
 item->next = q->first;
 if (item->next)
 item->next->prev = item;
 q->first = item;
 if (! q->last) q->last = item;
 unlock(q.lock);
}

struct queue_t { struct queue_item_t {
 queue_item *first; int value;
 queue_item *last; queue_item *prev;
 lock_t *lock; // each queue has its lock queue_item *next;
}; };

Thread-Safe Queue
int remove (queue_t q) {
 queue_item_t *item;
 int x;
 lock(q.lock);
 if (! q->last) return -1;
 x = q->last->value;
 item = q->last->prev;
 free(q->last);
 if (item) { item->next = NULL; }
 q->last = item;
 if (q->last == NULL) {
 q->first = NULL;
 }
 unlock(q.lock);
 return x;
}

Critical Sections and Performance
 An easy way to make code thread safe is to put a lot of

things in critical sections
 “I don’t really know what these functions do, I’ll use a single

lock and put all calls in a critical section”
 Problem: Critical sections reduce concurrency

 Because in a critical section there can be only one thread
 At the extreme, the code becomes purely sequential

 Great for correctness, but not desired for multi-core
performance and/or interactivity

 For better concurrency: make short critical sections
 Use many locks whenever possible to generate many shorter

independent critical sections rather than a few longer ones
 Threads can be in different critical sections at the same time

 Goal: one should put only what’s necessary between
lock() and unlock()

Better Thread Safe Queue
void insert (queue_t q, int x) {
 // lock(q.lock);
 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t));
 item->value = x;
 lock(q.lock);
 item->next = q->first;
 if (item->next)
 item->next->prev = item;
 q->first = item;
 if (! q->last) q->last = item;
 unlock(q.lock);
}

taken outside
of the CS

A consumer can operate
on the queue while a
producer is allocating
memory for a new element
⇒ more concurrency

Good General Principles
 Try to make critical sections as short as possible
 Try to avoid critical sections by replicating or

splitting shared data whenever possible
 It may be that data structures can be

reorganized so that threads don’t step on
each others’ toes

Example: use two separate counters to avoid
the “lost update” problem in our first simple
example, and sum them up when both
threads have completed

 Let’s look at the two versions of code for
computing the sum of an array…

Sum Computation
// Global variables
lock_t lock;
int sum = 0;
int Array[1000];

// Thread #1
for (int i = 0; i < 500; i++) {
 lock(lock);
 sum += Array[i];
 unlock(lock);
}

// Thread #2
for (int i = 500; i < 1000; i++) {
 lock(lock);
 sum += Array[i];
 unlock(lock);
}

Version #1

 This code is very sequential
 Only the loop index updates

can be done concurrently
 All sum computations are

done sequentially
 lock() and unlock() are each

called 1000 times, which is
bad for performance due to
locking overhead

Sum Computation
// Global variables
lock_t lock;
int sum = 0;
int Array[1000];

// Thread #1
int sum1 = 0;
for (int i = 0; i < 500; i++) {
 sum1 += Array[i];
}
lock(lock)
sum += sum1;
unlock(lock)

// Thread #2
int sum2 = 0;
for (int i = 500; i < 1000; i++) {
 sum2 += Array[i];
}
lock(lock)
sum += sum2;
unlock(lock) Version #2

 Almost perfectly concurrent
 Only two additions are done

sequentially
 lock() and unlock() are each

called only twice

Performance Comparison on
my Laptop using Javafoo

10000 0.003 0.001

20000 0.006 0.001

40000 0.012 0.002

80000 0.013 0.004

160000 0.005 0.004

320000 0.01 0.005

640000 0.015 0.005

1280000 0.034 0.006

2560000 0.068 0.006

5120000 0.145 0.006

10240000 0.332 0.007

20480000 0.613 0.007

40960000 1.206 0.008

81920000 2.462 0.017

163840000 4.945 0.039

327680000 10.002 0.081

655360000 21.416 0.165

SE
CO

ND
S

0

7.5

15

22.5

30

ARRAY SIZE

SLOW IMPLEMENTATION FAST IMPLEMENTATION

1

Good General Principles
 It is often not a good idea to take the sequential

code and merely add lock()/unlock() calls around all
race-condition-prone statements

 One should rethink/reorganize the code so that
making it concurrent is easier and more efficient

 Or even better, design code with concurrency
in mind from the get go

 Mutual exclusion via locks is something you should try
to avoid if you can

 Much later in the semester we’ll talk about lock-
free concurrency

 If using locks is necessary, then you have to use them
sparingly (short critical sections, few critical sections,
few locks) and correctly

How Many Locks to Use?
 Try to use different locks for different data items

 See our queue example, in which we attached a different
lock to each queue

 One concern is that with many locks there is more
memory consumption and there may be more
overhead

 Say you have a 1GB array of 1-byte elements, and
30 threads updating the elements in whatever
sequence

 One lock for the whole array: no concurrency, tiny
memory consumption

 One lock per element: great concurrency, memory more
than doubled!

 One lock per 1K elements: perhaps a good compromise?

Common Misunderstanding
 Note that in the previous slide I wrote: “1 lock per

element”
 This may give the wrong impression that one

associates a lock to a zone of memory
 e.g., “you should lock that variable”
 e.g., “you don’t need any locks for that array”

 When we say “lock variable x” what we mean is: place
lock/unlock calls around each statement in the whole
code that updates variable x

 If the code is well-designed, then we shouldn’t have
update statements for a variable over the whole code

 e.g., if you code has tons of x++ all over the place, better to
have an increment() method inside of which you can place
the calls to lock / unlock once and for all

DeadLocks
 Deadlock: a common problem when synchronizing threads with
multiple locks

You write your program with many threads and locks, you
run it, and at some point, it’s stuck

 Deadlock can happen with nested critical sections
 Classic example (which can lead to a deadlock):

. . .
lock(lock1)
. . .
lock(lock2)
. . .
unlock(lock2)
. . .
unlock(lock1)
. . .

. . .
lock(lock2)
. . .
lock(lock1)
. . .
unlock(lock1)
. . .
unlock(lock2)
. . .

 See ICS 332 (Operating Systems)

Deadlocks
 The previous example is trivial
 But in practice code can become complex

and deadlocks do happen and require
careful debugging
 The calls to lock() and unlock() are not

always close to each other in the code
 We will discuss a case-study in a couple of

lectures that will highlight many thread
synchronization problems, including
deadlocks

Re-entrant (Recursive) Locks
 A lock is said to be re-entrant or recursive if a single thread can

acquire it multiple times
 Example: lock(A); lock(A); unlock(A); unlock(A)
 If the lock is not re-entrant the above code deadlocks
 Can be convenient for the following idiom (a thread-safe method

that calls another thread-safe method):

void f() {
 lock(A);
 ...
 g();
 unlock(A);
}

void g() {
 lock(A);
 ...
 unlock(A);
}

 By default, in Java, locks are re-entrant
 In C with PThread locks can be made re-entrant
 Some argue that re-entrant locks are a bad idea

Always Lock()-Unlock() on the
same thread!
 The typical usage of locks in a thread is to have a call to

lock() followed by a call to unlock()
 In most languages, a thread cannot call unlock() on a lock

that thread hasn’t acquired first
 And even if you could, it’s considered a HORRIBLE practice

 This is annoyingly “implementation-dependent”
 Java: “A Lock implementation will usually impose restrictions on

which thread can release a lock (typically only the holder of the
lock can release it) and may throw an (unchecked) exception if the
restriction is violated. Any restrictions and the exception type must
be documented by that Lock implementation.”

 C with Pthreads: “If a thread attempts to unlock a mutex that it has
not locked or a mutex which is unlocked, undefined behavior
results.”

 But a “good” system should throw an error, and you shouldn’t do it

Lock for non-Updates

 We have said that the typical use-case for
creating critical sections is to “protect”
updates to memory locations

 But there are many times when one needs to
put locks around things that seem atomic!

 This is pretty counter-intuitive, and it’s
complicated because it depends on what the
program does and what its intent is

 Let just see two simple examples….

Critical Section For Non-Update
 Consider the following code fragments assuming that:

 Thread #1 will call f() once
 Thread #2 will call g() once
 These are the only lines of code that reference variable x

//global variable
int x=100;

void f() {
x = 2;

}

void g() {
x++;

}

 The only two acceptable outcomes of this program are x=2 or x=3
 The “x++” statement is not atomic and we should protect it with a lock
 But what about the “x=2” statement? It’s atomic so we are fine????
 NO: if we don’t put a lock around “x=2” we could have:

 Thread #2 reads value 100 from RAM, and gets context-switched out
 Thread #1 sets x to 2 in RAM
 Thread #2 is context-switched back in, computes 101, and writes it to RAM
 We end up with a wrong execution!!

Critical Section For Non-Update
 Consider the following code fragments assuming that:

 Thread #1 will call f() once
 Thread #2 will call g() once
 These are the only lines of code that reference variable x

//global variable
int x=100;
lock_t lock1;

void f() {
lock(lock1);
x = 2;
lock(lock1);

}

void g() {
lock(lock1);
x++;
lock(lock1);

}

 This is one of the reasons concurrency is deemed difficult… it’s
often a bit counter-intuitive and requires careful thinking

 A lot of it comes from experience
 Let’s look at another example….

Is this Java Stack Thread-Safe?
classStack<E> {

 private E[] array =
 (E[]) new Object[SIZE];
 int index= -1;

 threadsafe void push(E val) {
 array[++index] = val;
 }

 threadsafe E pop() {
 return array[index--];
 }

 E peek() {
 return array[index];
 }

}

 Here we don’t have explicit
lock but assume the
language provides a
threadsafe keyword

 The idea was to not make
the peek() method thread
safe, because it just does a
memory access, which is
atomic

 Is this ok or not?

Is this Java Stack Thread-Safe?

classStack<E> {

 private E[] array =
 (E[]) new Object[SIZE];
 int index= -1;

 threadsafe void push(E val) {
 array[++index] = val;
 }

 threadsafe E pop() {
 return array[index--];
 }

 E peek() {
 return array[index];
 }

}

 Think about the code for push() in
“assembly”:

mov R1, [index]
inc R1
mov [index], R1
mul R1, 4
mov R2, array
add R2, R1
mov [R2], val
return

 The code for peek() is:
mov R3, [index]
mul R3, 4
mov R4, array
add R4, R3
return [R4]

 The blue code could be interleaved
anywhere in the red code!
(because peek() is not thread safe)

A Bad Interleaving

classStack<E> {

 private E[] array =
 (E[]) new Object[SIZE];
 int index= -1;

 threadsafe void push(E val) {
 array[++index] = val;
 }

 theadsafe E pop() {
 return array[index--];
 }

 E peek() {
 return array[index];
 }

}

mov R1, [index]
inc R1
mov [index], R1
mov R3, [index]
mul R4, 8
mov R4, array
add R4, R3
return [R4]
mul R1, 8
mov R2, array
add R2, R1
mov [R2], val
return

Peek() returns the
value array[index],
which is uninitialized!

Push() increments
index, and is about
to put data at
array[index]

 We MUST make the peek() method
thread safe, even though the code of
that method is only “reading data”

Conclusion
 To prevent race conditions one can use locks to create

critical sections
 Using locks requires care:

 Long critical sections reduce concurrency
 Calling lock()/unlock() has overhead
 Using too few locks reduces concurrency
 Using many locks requires memory
 Using locks can lead to deadlocks
 Sometimes one need to “lock” a section of code that

looks atomic

 Next up: How are locks implemented?
 But before that: Homework Assignment #3

 A “pencil and paper” assignment

