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Disclaimer

 The first few slides are a review of ICS332 
material 

 But this material is so important, that going 
over it again is a good idea 
 Especially if ICS332 was a few semesters ago



Thread Safety
 In the previous module we’ve talked about 

the need for thread safety 
 i.e., the need to have threads read/write 

the same memory locations without 
race condition 

 In this module we talk about how we can 
make a piece of code thread-safe 

 The most basic concept for achieving thread 
safety is called a Lock



Atomicity and mutual exclusion
 What we need is a mechanism that makes a sequence of 

operations atomic 
 Atomicity is really mutual exclusion 

 Whenever the sequence is initiated by thread A, we are 
guaranteed that no other thread can initiate it before thread A 
completes it  

 If you’ve taken databases, you can think of this is a kind of 
transaction 

 This is a great idea, but how can we specify this in a 
program?  

 Answer: critical sections 
 A critical section is a section of code in which only one 

thread is allowed at a time 
 Not necessarily a contiguous section of code



Critical Sections
 Two critical sections in a program 

 No two threads can be in “blue” code at the same 
time 

 No two threads can be in “red” code at the same time 
 We could have one thread doing “blue”, one thread 

doing “red”, and many threads doing anything else



Critical Sections
 One would like to write code that looks like this: 

   while(true) { 
                  enter_CS(blue) 
                  x++ 
                  leave_CS(blue) 
             } 

 We would like to have the following properties 
 Mutual exclusion: only one thread can be inside the CS 
 No deadlocks: one of the competing threads will enter 

the CS 
 No unnecessary delays: a thread enters the CS 

immediately if no other thread is competing for it 
 Eventual entry: a thread that tries to enter the critical 

CS will enter it at some point



Critical Sections with Locks
 The concept of a critical section is binary 

Either 0 threads are in the critical section 
Or 1 thread is in the critical section 

 Therefore, the critical section can be “controlled” with a 
boolean variable 

 This variable is called a lock 
 Can take one of two values: “locked” or “unlocked” 
 Initially set to “unlocked” 

 Just like going to the toilet (if you’ve taken ICS332 from me, 
perhaps you remember this) 

While the lock is “red” get in the waiting line 
When the lock becomes “green” if you’re first in line go in 

and set the lock to “red” 
When you leave, set the lock to “green”



Locks
 Different languages have different ways to 

declare/use locks 
 We’ll see ways to do it in Java and C/C++ 

 Let’s use a C-like syntax for now: 
 Declaration:  lock_t  *lock  = new_lock() 

 (initialized to “unlocked”) 
 Acquire the lock:  lock(lock) 
 Release the lock:  unlock(lock)



Lock() and Unlock() pseudo-code

 For now, to understand what these functions do, let’s 
view them as pseudo-code

unlock(lock_t *lock) { 
    *lock = UNLOCKED 
}

// “Magically” thread-safe 
lock(lock_t *lock) { 

while (*lock == LOCKED) { 
 // spin  

} 
    *lock = LOCKED 
}

 We will understand how to implement the above in the next set of 
lecture notes… 

 Clearly, lock() isn’t thread-safe as written above 
 Anybody sees why?



Lock Typical Use Case: Updates

 The typical (but not the only) use case for 
locks and creating critical sections is when 
multiple threads need to update the same 
memory locations 

 All lines of code that update a memory location 
must then be put inside a critical section 

 And typically, one uses different locks for 
different memory location 

 Let’s do a straightforward in-class activity 
here…



In-Class Activity
 Consider the following code fragments, assuming a bunch of threads 

that call f() and g() over and over 
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put 

in the calls to lock/unlock…

//global variables 
int x=100, y=0;

void f() { 
x += 2; 
y ++; 

}

void g() { 
x++; 

}



In-Class Activity
 Consider the following code fragments, assuming a bunch of threads 

that call f() and g() over and over  
 How many locks do you need to declare (lock1, lock2, lock3, etc.)? Put 

in the calls to lock/unlock…

//global variables 
int x=100, y=0; 
lock_t lock1, lock2;

void f() { 
lock(lock1); 
x += 2; 
unlock(lock1); 
lock(lock2); 
y ++; 
unlock(lock2); 

}

void g() { 
   lock(lock1); 

x++; 
unlock(lock1); 

}

Two locks 
Two critical sections



In-Class Activity
 An implementation with a single lock like this is 

correct, but not concurrent!! 
 While a thread updates x, no thread can update y 
 May defeat the purpose of using threads

//global variables 
int x=100, y=0; 
lock_t lock1, lock2;

void f() { 
lock(lock1); 
x += 2; 
y ++; 
unlock(lock1); 

}

void g() { 
   lock(lock1); 

x++; 
unlock(lock1); 

}



In-Class Activity

 An implementation with three locks is incorrect 
 Two threads could be updating variable x at the same 

time (one going “x += 2” and the other doing “x++”)

//global variables 
int x=100, y=0; 
lock_t lock1, lock2,   lock3;

void f() { 
lock(lock1); 
x += 2; 
unlock(lock1); 
lock(lock2); 
y ++; 
unlock(lock2); 

}

void g() { 
   lock(lock3); 

x++; 
unlock(lock3); 

}



Locks for Data Structures
 A classical use of locks is to protect updates of 

linked data structures 
 Example: Queue and threads 

 Consider a program that maintains a queue (of ints >0) 
 Thread #1 (Producer) adds elements to the queue 
 Thread #2 (Consumer) removes elements from the queue 
 We will see soon why this is very useful

 Thread #1 
 int x; 
 while(1) { 
     x = generate(); 
     insert(list,x);  
 }

 Thread #2 
 int x; 
 while(1) { 
     x = remove(list); 
 }



Queue Implementation
struct queue_t {   struct queue_item_t { 
    queue_item *first;      int value; 
    queue_item *last;      queue_item *prev; 
};         queue_item *next; 
     }; 

void insert (queue_t q, int x) {  
    queue_item_t *item = (queue_item_t *) calloc(1, sizeof(queue_item_t)); 
    item->value = x; 
    item->next = q->first; 
    if (item->next)  
        item->next->prev = item; 
    q->first = item; 
    if (! q->last)  q->last = item; 
}



Queue Implementation
int remove (queue_t q) { 
 queue_item_t *item; 
 int x; 
 if (! q->last) return -1;  // -1 means “no item” 
 x = q->last->value; 
 item = q->last->prev; 
  free(q->last); 
 if (item) { 
     item->next = NULL; 
 }  
 q->last = item; 
     if (q->last == NULL) { 
     q->first = NULL; 
 } 
 return x; 
}



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer calls insert(3)
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3

context 
switch



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove 
  ... 
  item = q->last->prev;   // returns NULL 
    free(q->last); 
  if (item) { 
  . . . 
  

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove 
  ... 
  item = q->last->prev;   // returns NULL 
    free(q->last); 
  if (item) { 
  . . . 
  

3



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Consumer calls remove 
  ... 
  item = q->last->prev;   // returns NULL 
    free(q->last); 
  if (item) { 
  . . . 
  

3

context 
switch

Freed Memory



What bad thing could happen?
 Consider the following queue

2NULL NULL

first last

 The Producer resumes
queue_item_t *item = calloc(...) 
item->value = x; 
item->next = q->first; 
if (item->next)  
    item->next->prev = item; 
q->first = item; 
if (! q->last)   
    q->last = item;

3

Freed Memory

Freed Memory 
Access



So what?
 In this example, the producer updates memory that has been 

de-allocated by another thread! 
 In Java we would get an exception once in a while 
 C doesn’t zero out or track freed memory and we would get a 

segmentation fault once in a while 
 A third thread could have done a malloc and be given the memory 

that has been de-allocated 
 Then the producer could modify the memory used by that third 

thread for whatever purpose! 
 This could cause a bug in that third thread that could be very 

difficult to track (because that thread may have nothing to do with 
the queue!) 

 Basically, if you have threads and you get unexplained 
segmentation faults, you may have a race condition 

 Even if the segmentation fault occurs in a part of the code that has 
nothing to do, time- or space-wise, with the relevant part of the code! 

 Let’s use locks and fix it!



Simple Solution

   lock_t lock;   // global variable 

void producer() {   void consumer() { 
  int x;       int x;  
  while(1) {       while(1) { 
 x = generate();        lock(lock);  
    lock(lock);        x = remove(list); 
    insert(list,x);            unlock(lock); 
    unlock(lock);            process(x); 
  }                  } 
}         }   



Simple Solution

   lock_t lock;   // global variable 

void producer() {   void consumer() { 
  int x;       int x;  
  while(1) {       while(1) { 
 x = generate();        lock(lock);  
    lock(lock);        x = remove(list); 
    insert(list,x);            unlock(lock); 
    unlock(lock);            process(x); 
  }                  } 
}         }   

While one thread is modifying the queue 

(inserting or removing), no other thread can 

insert or remove



Simple Solution
 Important: we use a single lock that is referenced 

and used by both threads 
 All threads have to wait for the same “toilet” 

 The solution is simple: place lock()/unlock() calls 
around all calls that manipulate the queue 

 Sometimes determining what calls and code segments 
modify a data structure requires some thought 

 The critical section is then the whole queue 
implementation 

 This is the typical strategy when using a non-thread-
safe implementation of the queue abstract data type 

 To produce a thread-safe implementation of the 
queue, one needs to create critical sections within 
the queue methods



Thread Safe Queue

void insert (queue_t q, int x) { 
    lock(q.lock);   
 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t)); 
 item->value = x; 
 item->next = q->first; 
 if (item->next)  
        item->next->prev = item; 
 q->first = item; 
 if (! q->last)  q->last = item; 
    unlock(q.lock); 
}

struct queue_t {     struct queue_item_t { 
    queue_item *first;                int value; 
    queue_item *last;                queue_item *prev; 
    lock_t *lock; // each queue has its lock          queue_item *next; 
};       };



Thread-Safe Queue
int remove (queue_t q) { 
 queue_item_t *item; 
 int x; 
     lock(q.lock); 
 if (! q->last) return -1; 
 x = q->last->value; 
 item = q->last->prev; 
  free(q->last); 
 if (item) {  item->next = NULL;  }  
 q->last = item; 
     if (q->last == NULL) { 
     q->first = NULL; 
 } 
     unlock(q.lock); 
 return x; 
}



Critical Sections and Performance
 An easy way to make code thread safe is to put a lot of 

things in critical sections 
 “I don’t really know what these functions do, I’ll use a single 

lock and put all calls in a critical section” 
 Problem: Critical sections reduce concurrency 

 Because in a critical section there can be only one thread 
 At the extreme, the code becomes purely sequential 

 Great for correctness, but not desired for multi-core 
performance and/or interactivity 

 For better concurrency: make short critical sections 
 Use many locks whenever possible to generate many shorter 

independent critical sections rather than a few longer ones 
 Threads can be in different critical sections at the same time 

 Goal: one should put only what’s necessary between 
lock() and unlock()



Better Thread Safe Queue
void insert (queue_t q, int x) { 
 // lock(q.lock); 
 queue_item_t *item = (queue_item_t) calloc(1,sizeof(queue_item_t)); 
 item->value = x; 
   lock(q.lock); 
 item->next = q->first; 
 if (item->next)  
        item->next->prev = item; 
 q->first = item; 
 if (! q->last)  q->last = item; 
    unlock(q.lock); 
}

taken outside 
of the CS

A consumer can operate 
on the queue while a 
producer is allocating 
memory for a new element 
⇒ more concurrency



Good General Principles
 Try to make critical sections as short as possible 
 Try to avoid critical sections by replicating or 

splitting shared data whenever possible 
 It may be that data structures can be 

reorganized so that threads don’t step on 
each others’ toes 

Example: use two separate counters to avoid 
the “lost update” problem in our first simple 
example, and sum them up when both 
threads have completed 

 Let’s look at the two versions of code for 
computing the sum of an array…



Sum Computation
// Global variables 
lock_t lock; 
int sum = 0; 
int Array[1000]; 

// Thread #1 
for (int i = 0; i < 500; i++) { 
  lock(lock); 
  sum += Array[i]; 
  unlock(lock); 
} 

// Thread #2 
for (int i = 500; i < 1000; i++) { 
  lock(lock); 
  sum += Array[i]; 
  unlock(lock); 
}

Version #1

 This code is very sequential 
 Only the loop index updates 

can be done concurrently 
 All sum computations are 

done sequentially 
 lock() and unlock() are each 

called 1000 times, which is 
bad for performance due to 
locking overhead



Sum Computation
// Global variables 
lock_t lock; 
int sum = 0; 
int Array[1000]; 

// Thread #1 
int sum1 = 0; 
for (int i = 0; i < 500; i++) { 
  sum1 += Array[i]; 
} 
lock(lock) 
sum += sum1; 
unlock(lock) 

// Thread #2 
int sum2 = 0; 
for (int i = 500; i < 1000; i++) { 
  sum2 += Array[i]; 
} 
lock(lock) 
sum += sum2; 
unlock(lock) Version #2

 Almost perfectly concurrent 
 Only two additions are done 

sequentially 
 lock() and unlock() are each 

called only twice



Performance Comparison on  
my Laptop using Javafoo

10000 0.003 0.001

20000 0.006 0.001

40000 0.012 0.002

80000 0.013 0.004

160000 0.005 0.004

320000 0.01 0.005

640000 0.015 0.005

1280000 0.034 0.006

2560000 0.068 0.006

5120000 0.145 0.006

10240000 0.332 0.007

20480000 0.613 0.007

40960000 1.206 0.008

81920000 2.462 0.017

163840000 4.945 0.039

327680000 10.002 0.081

655360000 21.416 0.165
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Good General Principles
 It is often not a good idea to take the sequential 

code and merely add lock()/unlock() calls around all 
race-condition-prone statements 

 One should rethink/reorganize the code so that 
making it concurrent is easier and more efficient 

 Or even better, design code with concurrency 
in mind from the get go 

 Mutual exclusion via locks is something you should try 
to avoid if you can 

 Much later in the semester we’ll talk about lock-
free concurrency 

 If using locks is necessary, then you have to use them 
sparingly (short critical sections, few critical sections, 
few locks) and correctly



How Many Locks to Use?
 Try to use different locks for different data items 

 See our queue example, in which we attached a different 
lock to each queue 

 One concern is that with many locks there is more 
memory consumption and there may be more 
overhead 

 Say you have a 1GB array of 1-byte elements, and 
30 threads updating the elements in whatever 
sequence 

 One lock for the whole array: no concurrency, tiny 
memory consumption 

 One lock per element: great concurrency, memory more 
than doubled! 

 One lock per 1K elements: perhaps a good compromise?



Common Misunderstanding
 Note that in the previous slide I wrote: “1 lock per 

element” 
 This may give the wrong impression that one 

associates a lock to a zone of memory 
 e.g., “you should lock that variable” 
 e.g., “you don’t need any locks for that array” 

 When we say “lock variable x” what we mean is: place 
lock/unlock calls around each statement in the whole 
code that updates variable x 

 If the code is well-designed, then we shouldn’t have 
update statements for a variable over the whole code 

 e.g., if you code has tons of x++ all over the place, better to 
have an increment() method inside of which you can place 
the calls to lock / unlock once and for all



DeadLocks
 Deadlock: a common problem when synchronizing threads with 
multiple locks 

You write your program with many threads and locks, you 
run it, and at some point, it’s stuck 

 Deadlock can happen with nested critical sections 
 Classic example (which can lead to a deadlock):

. . . 
lock(lock1) 
. . . 
lock(lock2) 
. . . 
unlock(lock2) 
. . . 
unlock(lock1) 
. . .

. . . 
lock(lock2) 
. . . 
lock(lock1) 
. . . 
unlock(lock1) 
. . . 
unlock(lock2) 
. . .

 See ICS 332 (Operating Systems)



Deadlocks
 The previous example is trivial 
 But in practice code can become complex 

and deadlocks do happen and require 
careful debugging 
 The calls to lock() and unlock() are not 

always close to each other in the code 
 We will discuss a case-study in a couple of 

lectures that will highlight many thread 
synchronization problems, including 
deadlocks



Re-entrant (Recursive) Locks
 A lock is said to be re-entrant or recursive if a single thread can 

acquire it multiple times 
 Example: lock(A); lock(A); unlock(A); unlock(A) 
 If the lock is not re-entrant the above code deadlocks 
 Can be convenient for the following idiom (a thread-safe method 

that calls another thread-safe method):

void f() { 
  lock(A); 
  ... 
  g(); 
  unlock(A); 
}

void g() { 
  lock(A); 
  ... 
  unlock(A); 
}

 By default, in Java, locks are re-entrant 
 In C with PThread locks can be made re-entrant 
 Some argue that re-entrant locks are a bad idea



Always Lock()-Unlock() on the 
same thread!
 The typical usage of locks in a thread is to have a call to 

lock() followed by a call to unlock() 
 In most languages, a thread cannot call unlock() on a lock 

that thread hasn’t acquired first 
 And even if you could, it’s considered a HORRIBLE practice 

 This is annoyingly “implementation-dependent” 
 Java: “A Lock implementation will usually impose restrictions on 

which thread can release a lock (typically only the holder of the 
lock can release it) and may throw an (unchecked) exception if the 
restriction is violated. Any restrictions and the exception type must 
be documented by that Lock implementation.” 

 C with Pthreads: “If a thread attempts to unlock a mutex that it has 
not locked or a mutex which is unlocked, undefined behavior 
results.” 

 But a “good” system should throw an error, and you shouldn’t do it



Lock for non-Updates

 We have said that the typical use-case for 
creating critical sections is to “protect” 
updates to memory locations 

 But there are many times when one needs to 
put locks around things that seem atomic! 

 This is pretty counter-intuitive, and it’s 
complicated because it depends on what the 
program does and what its intent is 

 Let just see two simple examples….



Critical Section For Non-Update
 Consider the following code fragments assuming that: 

 Thread #1 will call f() once 
 Thread #2 will call g() once 
 These are the only lines of code that reference variable x

//global variable 
int x=100;

void f() { 
x = 2; 

}

void g() { 
x++; 

}

 The only two acceptable outcomes of this program are x=2 or x=3 
 The “x++” statement is not atomic and we should protect it with a lock  
 But what about the “x=2” statement? It’s atomic so we are fine???? 
 NO: if we don’t put a lock around “x=2” we could have: 

 Thread #2 reads value 100 from RAM, and gets context-switched out 
 Thread #1 sets x to 2 in RAM 
 Thread #2 is context-switched back in, computes 101, and writes it to RAM 
 We end up with a wrong execution!!



Critical Section For Non-Update
 Consider the following code fragments assuming that: 

 Thread #1 will call f() once 
 Thread #2 will call g() once 
 These are the only lines of code that reference variable x

//global variable 
int x=100; 
lock_t lock1;

void f() { 
lock(lock1); 
x = 2; 
lock(lock1); 

}

void g() { 
lock(lock1); 
x++; 
lock(lock1); 

}

 This is one of the reasons concurrency is deemed difficult… it’s 
often a bit counter-intuitive and requires careful thinking 

 A lot of it comes from experience 
 Let’s look at another example….



Is this Java Stack Thread-Safe?
classStack<E> {

  private E[] array = 
    (E[]) new Object[SIZE];
  int index= -1;

  threadsafe void push(E val) {
    array[++index] = val;
  }

  threadsafe E pop() { 
    return array[index--];
  }
  
  E peek() {
    return array[index];
  }

}

 Here we don’t have explicit 
lock but assume the 
language provides a 
threadsafe keyword 

 The idea was to not make 
the peek() method thread 
safe, because it just does a 
memory access, which is 
atomic 

 Is this ok or not?



Is this Java Stack Thread-Safe?

classStack<E> {

  private E[] array = 
    (E[]) new Object[SIZE];
  int index= -1;

  threadsafe void push(E val) {
    array[++index] = val;
  }

  threadsafe E pop() { 
    return array[index--];
  }
  
  E peek() {
    return array[index];
  }

}

 Think about the code for push() in 
“assembly”: 

mov R1, [index]
inc R1
mov [index], R1
mul R1, 4
mov R2, array
add R2, R1
mov [R2], val
return

 The code for peek() is: 
mov R3, [index]
mul R3, 4
mov R4, array
add R4, R3
return [R4]

 The blue code could be interleaved 
anywhere in the red code! 
(because peek() is not thread safe)



A Bad Interleaving

classStack<E> {

  private E[] array = 
    (E[]) new Object[SIZE];
  int index= -1;

  threadsafe void push(E val) {
    array[++index] = val;
  }

  theadsafe E pop() { 
    return array[index--];
  }
  
  E peek() {
    return array[index];
  }

}

mov R1, [index]
inc R1
mov [index], R1
mov R3, [index]
mul R4, 8
mov R4, array
add R4, R3
return [R4]
mul R1, 8
mov R2, array
add R2, R1
mov [R2], val
return

Peek() returns the 
value array[index], 
which  is uninitialized!

Push() increments 
index, and is about 
to put data at 
array[index]

 We MUST make the peek() method 
thread safe, even though the code of 
that method is only “reading data”



Conclusion
 To prevent race conditions one can use locks to create 

critical sections 
 Using locks requires care: 

 Long critical sections reduce concurrency 
 Calling lock()/unlock() has overhead 
 Using too few locks reduces concurrency 
 Using many locks requires memory 
 Using locks can lead to deadlocks 
 Sometimes one need to “lock” a section of code that 

looks atomic 

 Next up: How are locks implemented? 
 But before that: Homework Assignment #3 

 A “pencil and paper” assignment


