
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Midterm Review

What to expect
 Closed notes, up to and including the Classic

Concurrency Problems” module
 General short-answer questions about sequential

code optimization, concurrency, and threads in C/Java
 Some code with concurrency bugs to find

 Java: the whole gamut of Java concurrency stuff
 locks/conds: pseudo-code
 semaphores: pseudo-code
 classic problems: pseudo-code

 “Write pseudo-code” questions
 Standard problems, nothing too creative
 And really, do it in pseudo-code!

 Some practice questions have been posted on Laulima

Concurrency Abstractions

 Locks + Condition Variables
 Semaphores
 Java Monitors

 All can be implemented in terms of the
others

Lock Implementation

 Software-only implementations are very
challenging

 Disabling interrupts is not typically feasible for
safety concerns

 So one uses atomic hardware instructions
 .e.g., compare-and-swap

 These instructions make it possible to
implement spinlocks

 Another kind of locks is blocking lock
 Involvement of the OS

 Both kinds serve the same purpose, but have
different overhead/cost behaviors

Condition Variables

 Implemented by the OS
 wait(): block until somebody calls notify*()
 notify(): wake up a blocked thread
 notify_all(): wake up all blocked threads

 A condition variable is always associated
with a lock:
 Calling wait() releases the lock

Semaphores

 P()
 Atomic
 Wait until the value is >0
 Decrement it by 1 and return

 V()
 Atomic
 Increment the value by 1 (to infinitum!!)

 Can have any integer initial values
 Typical:

 value either 0 or 1: binary semaphore
 value >=0: counting semaphore

In Java?

 Each object has a hidden lock and condition
variable
 Locking/unlocking done via the synchronized

keyword
 Condition variables methods are called wait(),

notify(), notifyAll()
 One can also use Lock, ConditionVariables,

Semaphore classes provided by the Java
concurrency package

Semaphores with Monitors

 In class we have implemented several
basic concepts in Java
 Semaphores, Barriers, a Blocking Lock by

hand, etc.
 Make sure you understand those (simple)

implementations

 Let’s now use our Semaphore
implementation to implement locks…
 Which is so straightforward it hurts??

Locks with Semaphores?
public class Lock {

Semaphore sem;

public Lock() {
sem = new Semaphore(1);

}
public lock() {

sem.P();
}
public unlock() {

sem.V();
}

Locks with Semaphores?
public class Lock {

Semaphore sem;

public Lock() {
sem = new Semaphore(1);

}
public lock() {

sem.P();
}
public unlock() {

sem.V();
}

What’s wrong with this?

Locks with Semaphores?
public class Lock {

Semaphore sem;

public Lock() {
sem = new Semaphore(1);

}
public lock() {

sem.P();
}
public unlock() {

sem.V();
}

What’s wrong with this?
Two calls to unlock() will give the
semaphore a value of 2, unless the
semaphore is implemented as a
binary semaphore!

Binary Semaphore
public class Semaphore {

int semaphore;

...
public synchronized void V() {
 if (semaphore > 0)
 return; // unlocking an unlocked lock has no effect
 semaphore = 1;
 this.notify();
}

}

So What?

 Probable a good idea to understand how to
implement:
 semaphores with locks and condition variables
 locks and condition variables with semaphores
 locks and condition variables with monitors

 And in Java using “monitors” (i.e., hidden locks
and condition variables within objects)

Producer / Consumer

 The main abstraction we’ve seen is
bounded Producer/Consumer

current

NProd

Prod

Prod

Cons

Cons

Cons

Solution with Semaphores
semaphore mutex=1, freeslots=N, takenslots=0;

int current=-1, buffer[N];

void producer() {

	 while(true) {

	 	 P(freeslots);

	 	 P(mutex);

	 	 current++;

	 	 buffer[current] = produce();

	 	 V(mutex)

	 	 V(takenslots);

 }

}

void consumer() {
	 while (true) {
	 	 P(takenslots);
	 	 P(mutex);
	 	 consume(buffer[current]);
	 	 current--;
	 	 V(mutex);
	 	 V(freeslots);
	 }
}

Solution with Locks/Cond Vars
lock mutex;
cond notfull, notempty;
boolean empty=true, full=false;
int current=-1, buffer[N];

void producer() {
	 while(true) {
	 	 lock(mutex);
	 	 if (full)
	 	 wait(notfull, mutex);
	 	 current++;
	 	 buffer[current] = produce();
	 	 empty = false;
	 	 if (current == N-1)
	 	 full = true;

	 unlock(mutex);
	 }
}

void consumer() {
	 while (true) {
	 	 lock(mutex);
	 	 if (empty)
 wait(notempty, mutex);
	 	 consume(buffer[current]);
	 	 current--;
	 	 full = false;
	 	 signal(notfull);
	 	 unlock(mutex);
	 	 if (current == -1)
	 	 empty = true;
	 }
}

What’s wrong with this code?

Solution with Locks/Cond Vars
lock mutex;
cond notfull, notempty;
boolean empty=true, full=false;
int current=-1, buffer[N];

void producer() {
	 while(true) {
	 	 lock(mutex);

	 	 while (full)
	 	 wait(notfull, mutex);
	 	 current++;
	 	 buffer[current] = produce();
	 	 empty = false;
	 	 if (current == N-1)
	 	 full = true;

 signal(notempty);
	 unlock(mutex);

	 }
}

void consumer() {
	 while (true) {
	 	 lock(mutex);

	 	 while (empty)
 wait(notempty, mutex);
	 	 consume(buffer[current]);
	 	 current--;
	 	 full = false;
	 	 signal(notfull);
	 	 unlock(mutex);
	 	 if (current == -1)
	 	 empty = true;
	 }
}

One thing to note about signal()

 You should call signal() only once the
boolean other threads are waiting for is true

while (!valid) {
wait(cond, mutex);

}

valid = true;
signal(cond);

signal(cond);
valid = true;

The waiting thread may “miss” it and never be awakened again
(rare bug because calling signal() in code after the things we’re
signaling for has happened is very natural)

ProdCons with Monitors
monitor ProdCons {
 cond notempty, notfull;
 int buffer[N];
 int current=-1;
 void produce(int element) {
 while (current >= N-1) notfull.wait();
 current++;
 buffer[current] = element;
 notempty.notify();
 }
 int consume() {
 int tmp;
 while(current == -1) notempty.wait();
 tmp = buffer[current];
 current--;
 notfull.notify();
 return tmp;
 }
}

Straight Translation to Java
public class ProdCons {

 private int buffer[];

 private int current;

 private Object notfull, notempty;

 public ProdCons() { }

 public void synchronized produce(int element) {

 while (current > N-1) { notfull.wait(); }

 current++;

 buffer[current] = element;

 notempty.notify();

 }

 public int synchronized consume() {

 while (current == -1) { notempty.wait(); }

 int tmp = buffer[current];

 current--;

 notfull.notify();

 return tmp;

 }

}

Is this OK?

Translation to Java: first try
public class ProdCons {

 private int buffer[];

 private int current;

 private Object notfull, notempty;

 public ProdCons() { }

 public void synchronized produce(int element) {

 while (current > N-1) { notfull.wait(); }

 current++;

 buffer[current] = element;

 notempty.notify();

 }

 public int synchronized consume() {

 while (current == -1) { notempty.wait(); }

 int tmp = buffer[current];

 current--;

 notfull.notify();

 return tmp;

 }

}

should be in
synchronized(notfull) or in
synchronized(notempty)
blocks!!

We really have 3 locks
hidden here:

The one for “this”
The one for notfull
The one for notempty

We have to use them all

Brute-force Translation to Java
public class ProdCons {
 private int buffer[];
 private int current;
 private Object notfull, notempty;

 public ProdCons() { }

 public void produce(int element) {
 synchronized(notfull) {
	 	 while (current > N-1) {
	 	 	 notfull.wait();
	 	 }
	 }
	 synchronized(this) {
 	 current++;
 	 buffer[current] = element;
	 }
	 synchronized (notempty) {
	 notempty.notify ();
	 }
 }
. . .

This is pretty messy

Using Semaphores could
be cleaner

Typical Translation to Java
public class ProdCons {

 private int buffer[];

 private int current;

 public ProdCons() { }

 public void synchronized produce(int element) {

 while (current > N-1) { this.wait(); }
 current++;

 buffer[current] = element;

 this.notifyAll();
 }

 public int synchronized consume() {

 while (current == -1) { this.wait(); }
 int tmp = buffer[current];

 current--;

 this.notifyAll();
 return tmp;

 }

}

One easy solution is just
to wake up EVERYBODY
and let whoever can get
out of its while loop
continue execution

It’s a little bit wasteful

Locks, Conds, Sems, Monitors..

 Any question about all this?
 What about the homework assignments?

Reader/Writer

 Readers call read() on a shared object
 Writers call write() on a shared object
 We want to have either

 1 active writer, 0 active readers
 N active readers, 0 active writers

 This is called “selective mutual exclusion”
 Question: how can we implement this?

 Should we review this?

Java and Concurrency

 Java has idiosyncrasies for Concurrency

 Thread interrupting, resuming, terminating
 The volatile keyword

The volatile Keyword
 Volatile variables are synchronized across threads: Each

read of a volatile will see the last write to that volatile

public class SomeClass {
 private int var1;
 private volatile int var2;

 public int get1() {
 return var1;
 }

 public int get2() {
 return var2;
 }
}

SomeClass stuff;
. . .
// Thread 1
System.out.println(stuff.get1());
. . .
System.out.println(stuff.get2());
. . .

. . .
// Thread 2
System.out.println(stuff.get1());
. . .
System.out.println(stuff.get2());
. . .

may see
stale
values!!!

When Do I Use volatile?
 If multiple threads “update” a variable, you need

synchronized methods/statements
 In this case, there is no need for a volatile variable, because

synchronized also ensures that the value written last is seen
by all threads

 But if you have a variable written to by 1 thread and
read by N threads, then you don’t need to go
synchronized and volatile will do the job

 with less overhead to boot!

The interrupt() method
 The Thread class provides an interrupt() method
 Calling interrupt() causes an InterruptedException to be raise

if/while the target thread is blocked
 As you see in compilation error messages, several blocking

functions mandate a try block and a catch for the
InterruptedException

 Example:

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
 // Perhaps do something
}

Killing/Pausing a Java thread
 Make sure you fully understand how to kill a

Java thread, and how to pause a Java thread

 Questions about this?
 Should we look back at the lecture notes?

“Classic” problem
 On the exam you can expect one “classic” question for

some real-life problem
 There are tons and tons of those, including very difficult

ones
 Which of course wouldn’t be on the exam

 The deal here is to recognize that a problem is
equivalent (or very close) to another problem we’ve
looked at

 producer-consumer, reader-writer, dining philosophers,
barber shop, compute servers on the cloud, bank account

 So although the problem may be about animals drinking
at a lake, patrons at a sushi bar, or cars at a toll both,
the idea is to think of what other problem it ressembles

Any More Questions?

