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More Concurrency
 So far we have talked about concurrency “within a 

box” 
 Within a processor 

 Pipelining 
 Multiple functional units 
 Instruction Level Parallelism 
 Hyper-Threading 

 Across processors 
 Multi-proc systems 
 Multi-core systems 
 Multi-proc/core systems 

 But this can only get us so far for many applications...



Toward Distributed Memory
 We saw that we go to concurrency for need of more 

CPU cycles (i.e., we want to use all cores) 
 But that’s often not enough and we can’t use a single 

system anymore 

 Reason #1: We need way more cycles than that in a 
single machine 

 Reason #2: We need way more RAM than that in a 
single machine 

 Solution: Use more than one machine
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Example: Image Processing Filter
 Say you want to apply a simple filter to a domain (image, 

computational fluid dynamics, etc.)



Sample Stencil App Code
	 	 int a[N][N], a_new[N][N]; 
   	 for (i=1; i<N-1; i++) { 
    		 #pragma omp parallel for private(j) 
	 	 	 for (j=1; j<N-1; j++) { 
               a_new[i][j] = f(a[i][j],  
                           a[i-1][j],a[i+1][j], 
	 	 	 	   	      a[i][j-1],a[i][j+1]); 
         	 } 
   	 }



Too Large?
 This is all well and good, but what if my array 

requires 8GB of memory and I only have 1GB of 
RAM? 

 I could think of just relying on virtual memory 
 This is bound to be very slow 

 I could manage the reads and writes to disk 
myself 

 Could be a bit faster than virtual memory if I am really 
clever, but would be complicated and still slow 

 Called an “out of core” implementation 
 Or, I could use 8 different machines with 1GB 

RAMs and run fast without really ever swapping 
between the memory and the disk!



Distributed Memory Programming

 So, I give you a bunch of individual hosts, 
all connected via a network 

 The big question is: How do we write code 
for something like this? 

 The application now consists of multiple 
processes running on different machines 
 Each process can consist of multiple threads! 

 Let’s look at this on a picture
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Distributed Memory Program
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 8 processes 
 Each process contains, for example, 4 threads 

 2 threads are running on each core using hyper threading



Distributed Memory Program
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 Each process stores some data in the memory of its box



How do we even declare arrays?

 We cannot have a declaration of an NxN 
array any more, because that would not fit 
in memory 

 Each process (running on a different 
system) must handle an array of size N x 
N/8 
 Each process allocates memory for 1/8 of the 

overall array 
 This is the same kind of “cutting the image 

into slabs” approach as we would used for 
a shared-memory implementation...



Data Distribution



Data Distribution



Data Distribution
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 Each piece of the image is stored in the memory of a 
different system 

 A process running on one system can only “see” (i.e., 
address) the local image piece, and has no way to 
address other pieces: NO SHARED MEMORY 

 This is what makes distributed memory programming 
MUCH harder than shared-memory programming



Boundaries!
 One of the problems now is: what happens at the 

boundaries/edges of the image tiles?

process #1

process #2

 Process #1 needs pixels from 
process #2 

 Process #2 needs pixels from 
process #1 

 But processes cannot share 
memory because they’re on 
different systems: 
 With multiple threads all on the 

same system, there is no notion 
that a thread can’t see some data! 

 In fact, we use threads because 
we want them to see the data 

 But now we’re forced to use 
processes, and on different 
machines to boot



Message-Passing
 Since processes cannot share memory, they 

have to exchange messages 
 “here are the pixels you need from me, give me the 

ones I need from you” 
 This type of programming is called “message-

passing” 
 Uses network communication 

 e.g., socket and TCP 
 So your code will have special function calls: 

 Send(...) 
 Receive(...) 

 We’re getting further away from “simple” shared-
memory programming



SPMD Program
 So at this point, we could  

 implement 8 different programs 
 start them up somehow on different nodes of our 

cluster (for instance) 
 have them all somehow identify their left and right 

neighbors, if any 
 Turns out that this is really cumbersome 

 And if I want to use 1000 processes, I have to write 
1000 programs?  

 Typically one uses/implements the notion of a 
process’ rank



Process Ranks
 To identify the processes participating in the 

computation, each process is assigned an index 
from 0 to N-1 

 Each process can find out what its rank is and 
how many processes there are in total
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Communication Patterns

 Process 0 will send to 1 and receive from 1 
 Process 1 will send to 0, receive from 0, send to 2, and 

receive from 2 
 ... 
 Process 7 will receive from 6 and send to 6
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SPMD Programming
 If every process can find out its rank and the total number 

of processes, then one can write a Single Program to 
operate on Multiple pieces of Data simultaneously (SPMD):

int main() { 

  if (my_rank() == 0) { 
     // talk to my below neighbor 
  } else if (my_rank() == num_processes() -1) { 
    // talk to my above neighbor 
  } else { 
    // talk to my  above and below neighbors 
  } 
}



Ranks and Number of Processes

 For now we’re going to assume we have 
the my_rank() and the num_processes() 
functions, and the all the logistics of 
starting up the processes is taken care of 
 The same assumption that we can make with 

OpenMP within a single machine 
 But this can also be implemented by hand 

if necessary 
 The way to write distributed memory 

programs is to rely on process ranks



Writing the SPMD Program

 The pseudo-code of the SPMD program 
could then look like

int main() { 
  int M = N/num_processes();  // assumed to be integer! 
  int original_image[M][N]; 
  int new_image[M][N]; 

  // load my part of the image from disk 
  // compute all the pixels that do not require communication 
  // send border pixels to my neighbor(s) 
  // receive border pixels from my neighbors() 
  // compute the remaining pixels 
  // save the new image to file in orderly fashion 
}



Writing the SPMD Program

 For now, let’s ignore the issue of loading/
writing files to disk 
 There are a lot of options here, simple/slow 

ones, and complex/fast ones 
 Let’s focus on computation and 

communication



Computing the “easy” pixels

Can be computed 
without communication

Requires pixels from neighbors
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Computing the “easy” pixels

for (j=0; j<N; j++) { 
   if (my_rank() == 0) { // top process can compute an extra row 
     new_image[0][j] = f ( original_image[0][j], 
                                       original_image[0][j-1], original_image[0][j+1], 
                                       original_image[1][j] ); 
   } 
   if (my_rank() == num_processes()-1) { // bottom process can compute  
                                                                 // an extra row 
     new_image[M-1][j] = f ( original_image[M-1][j], 
                                           original_image[M-1][j-1], original_image[M-1][j+1], 
                                           original_image[M-2][j] ); 
   } 
   for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows 
      new_image[i][j] =  f ( original_image[i][j], 
                                       original_image[i+1][j], original_image[i-1][j],  
                                       original_image[i][j-1], original_image[i][j+1] ); 
}



Global/Local Index

 One of the reason why distributed memory 
programming is difficult is because of the 
discrepancy between “global” and “local” 
indices 

 When I think “globally” of the whole image, 
I know where pixel at coordinates 
(100,100) is 

 But when I write the code, I will not 
reference the pixel as image[100][100]! 

 Let’s look at this on an example 



Global/Local Index

Process #0

Process #1

 The red pixel’s global coordinates are  (5,1) 
 The pixel on the 6th row and the 2nd column of the big array 

 But when Process #1 references it, it must use coordinates (1,1) 
 The pixel on the 2nd row and the 2nd column of the tile that’s stored in 

Process #1



Global/Local Index

Process #1

// Shared-Memory 
double array[8][8]; 
array[5][1] = 12;

// Distributed-Memory 
double array[4][8]; 
array[1][1] = 12;

Process #0



Message Passing

 Let’s assume that we have a send() 
function that takes as argument 
 The rank of the destination process 
 An address in local memory 
 A size (in bytes) 

 Let’s assume that we have a recv() 
function that takes as argument 
 An address in local memory 
 A size (in bytes)



A Process’ Memory
original_image: MxN

new_image: MxN

buffer_top: 1xN

buffer_bottom: 1xN

sent to above neighbor

sent to below neighbor

not communicated

updated w/o using received data 

received from above neighbor

received from below neighbor

updated with received data

updated with received data



Sending/Receiving Pixels
double buffer_top[N], buffer_bottom[N]; 

if (my_rank() != 0) {      // receive from above neighbor 
  send(my_rank()-1,&(original_image[0][0]),sizeof(double)*N); 
  recv(buffer_top, sizeof(double)*N); 
} 
if (my_rank() != num_processes()-1) {      // receive from below neighbor  
  send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N); 
  recv(buffer_bottom, sizeof(double)*N); 
} 

// assumes “non-blocking” sending



Computing Remaining Pixels
if (my_rank() != 0) {     // update top pixels 
	 for (j=0; j<N; j++) { 
         new_image[i][j] =  f (  original_image[i][j], 
                                           original_image[i+1][j], buffer_top[0][j],  
                                           original_image[i][j-1], original_image[i][j+1] ); 
    } 
} 

if (my_rank() != N-1) {     // update bottom pixels 
	 for (j=0; j<N; j++) { 
         new_image[i][j] =  f (  original_image[i][j], 
                                           buffer_bottom[0][j], original_image[i+1][j],  
                                           original_image[i][j-1], original_image[i][j+1] ); 
    } 
}



We’re done!
 At this point, we have written the whole code 
 What’s missing is I/O: 

 Read the image in 
 Write the image out 

 Dealing with I/O (efficiently) is a difficult problem, and we 
won’t really talk about it in depth 

 And of course we need to use a tool that provides the 
my_rank(), the num_processors(), the send() and the recv() 
functions 

 Each process allocates 1xN + 1xN + 2(M/P)xN = (2M/
P+2)N pixels, where P is the number of processors 

 Therefore, the total number of pixels allocated is: 2MN + 
2NP 

 2NP extra pixels allocated than in the sequential version 
 But it’s insignificant when spread across multiple systems



The Full Code
int main() {  
  int i, j, M = N/num_processes();  // assumed to be integer! 
  int original_image[M][N], new_image[M][N]; 
  double buffer_top[M], buffer_bottom[M]; 
  for (j=0; i<N; j++) { 
     if (my_rank() == 0) { // top process can compute an extra row 
       new_image[0][j] = f ( original_image[0][j], original_image[0][j-1], 
original_image[0][j+1], original_image[1][j] ); 
     } 
     if (my_rank() == num_processes()-1) { // bottom process can compute an 
extra row 
       new_image[M-1][j] = f ( original_image[M-1][j], original_image[M-1][j-1], 
original_image[M-1][j+1], original_image[M-2][j] ); 
     } 
     for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows 
        new_image[i][j] =  f ( original_image[i][j], original_image[i+1][j], 
original_image[i-1][j], original_image[i][j-1], original_image[i][j+1] ); 
  } 
  if (my_rank() != 0) {      // receive from above neighbor 
    send(my_rank()-1,&(original_image[0][0]),sizeof(double)*N); 
    recv(buffer_top, sizeof(double)*N); 
  } 
  if (my_rank() != num_processes()-1) {      // receive from below neighbor 
    send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N); 
    recv(buffer_bottom, sizeof(double)*N); 
  } 
  if (my_rank() != 0) {     // update top pixels 
    for (j=0; j<N; j++) { 
       new_image[i][j] =  f (  original_image[i][j], original_image[i+1][j], buffer_top[0]
[j], original_image[i][j-1], original_image[i][j+1] ); 
     } 
  } 
  if (my_rank() != N-1) {     // update bottom pixels 
    for (j=0; j<N; j++) { 
       new_image[i][j] =  f (  original_image[i][j], buffer_bottom[0][j], 
original_image[i+1][j], original_image[i][j-1], original_image[i][j+1] ); 
    } 
  } 
} 

int main() {  
  int i, j; 
  int original_image[N][N], new_image[N][N]; 
  for (i=1; I<M-1; i++)  
     for (j=1; j < M-1; j++)  
        new_image[i][j] =  f ( original_image[i][j], original_image[i+1]
[j], original_image[i-1][j], original_image[i][j-1], original_image[i]
[j+1] ); 
} 

Sequential

Distributed 
Memory
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Too hard?

 Clearly the previous example is a bit scary 
 Many researchers in academia and industry 

are trying to make this better 
 Tons of libraries written by smart people so that 

you don’t have to be 
 New languages / compilers 
 New programming models 

 Map-Reduce anyone? 
 New ways to think of applications



Distributed-Memory Computing
 Bottom-line: Distributed-Memory computing is not 

easy, but it’s the only way to scale many 
applications 

 As a result“parallel computing platforms” have 
been built for many decades 

 So-called “supercomputers” 
 The main idea: 

 Get a bunch of individual systems (commodity 
computers, or cool custom computers) 

 Get a network (commodity switches, cool custom 
interconnects) 

 Install software to make it possible to write/run program 
 and off we go....



A host of parallel machines
 There are (have been) many kinds of parallel 

machines 
 For the last 12 years their performance has been 

measured and recorded with the LINPACK 
benchmark, as part of Top500 

 It is a good source of information 	 	 	
about what machines are      	                  	    
and how they have evolved 

 Note that it’s really about 		 	
“supercomputers” 

   http://www.top500.org 	



What is Beowulf?
An experiment in parallel computing systems 
Established vision of low cost, high end computing, 

with public domain software (and led to software 
development) 

Tutorials and book for best practice on how to build 
such platforms 

Today by Beowulf cluster                                        
one means a commodity 	 	 	          
cluster that runs Linux and                                      
GNU-type software 

Project initiated by 	 	 	                         
T. Sterling and D. Becker                                           
at NASA in 1994



The Prettiest Supercomputer?

http://degiorgi.math.hr/~vsego/phun/
beautiful_supercomputer/

http://degiorgi.math.hr/~vsego/phun/beautiful_supercomputer/
http://degiorgi.math.hr/~vsego/phun/beautiful_supercomputer/


River-Water Cooled Supercomputer

 http://www.research.ibm.com/articles/
superMUC.shtml

http://www.research.ibm.com/articles/superMUC.shtml
http://www.research.ibm.com/articles/superMUC.shtml


Conclusion
 Writing distributed memory code is much more complex 

than shared memory code 
 One must identify what must be communicated 
 One must keep a mental picture of the memory across systems 
 In addition to all the concerns we have mentioned in class 

 e.g., cache reuse, synchronization among threads 
 And the typical problems of shared memory are still there 

 There can be “communication” deadlocks, race conditions, 
etc. 

 Big “supercomputers” are amazing and expensive 
machines with a long and politically/economically-charged 
history 

 Almost all of you will write some type of distributed-
memory application (not necessarily High-Performance 
Computing, but using the same concepts) 

 If you’re into all this, take ICS632


