Introduction to

Distributed-Memory
Computing

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" JE
More Concurrency

m So far we have talked about concurrency “within a
box”

Within a processor
= Pipelining
= Multiple functional units
® |nstruction Level Parallelism
= Hyper-Threading

AcCross processors
= Multi-proc systems
= Multi-core systems
= Multi-proc/core systems

m But this can only get us so far for many applications...

" J
Toward Distributed Memory

m \We saw that we go to concurrency for need of more
CPU cycles (i.e., we want to use all cores)

m But that's often not enough and we can’t use a single
system anymore

m Reason #1: We need way more cycles than that in a
single machine

m Reason #2: We need way more RAM than that in a
single machine

® Solution: Use more than one machine

"

Example: Image Processing Filter

® Say you want to apply a simple filter to a domain (image,
computational fluid dynamics, etc.)

H-f(mm N N

" JEE
Sample Stencil App Code

int a[N][N], a new[N][N];
for (i=1l; i<N-1; i++) {
#pragma omp parallel for private(j)
for (j=1; j<N-1; Jj++) {
a new[i] [j] = f£(a[il[]j],
a[i-1][3]1,ali+1][3],
a[i] [J-11,al1][3+1]);

"
Too Large?

® This is all well and good, but what if my array
requires 8GB of memory and | only have 1GB of
RAM?
® | could think of just relying on virtual memory
This is bound to be very slow

® | could manage the reads and writes to disk
myself

Could be a bit faster than virtual memory if | am really
clever, but would be complicated and still slow

Called an “out of core” implementation

® Or, | could use 8 different machines with 1GB
RAMs and run fast without really ever swapping
between the memory and the disk!

Distributed Memory Programming

® S0, | give you a bunch of individual
all connected via a network

hosts,

® The big question is: How do we write code

for something like this?

® The application now consists of mu
processes running on different mac

Each process can consist of multiple t
m | et’'s look at this on a picture

tiple
Nines

nreads!

"
Distributed Memory Platform

hyper-threaded dual-core chip dual-core system
processor core

SR E

"
Distributed Memory Platform

hyper-threaded dual-core chip dual-core system
processor core

SR E

=

AN
L

Cluster of dual-core systems

Distributed Memory Program

= / 8-way Switch \ =
m 8 processes

® Each process contains, for example, 4 threads
2 threads are running on each core using hyper threading

Distributed Memory Program
ey
/TN !L

i1

® Fach process stores some data in the memory of its box

How do we even declare arrays?

® \We cannot have a declaration of an NxN
array any more, because that would not fit
INn memory

®m Each process (running on a different
system) must handle an array of size N X
N/8

Each process allocates memory for 1/8 of the
overall array

® This is the same kind of “cutting the image
Into slabs”™ approach as we would used for
a shared-memory implementation...

Data Distribution

:,gv,: »

Ly B

Data Distribution

lllllllllll..v—.-ll

" A
Data Distribution

process #1 process #3

process #2

® Each piece of the image is stored in the memory of a
different system

m A process running on one system can only “see” (i.e.,
address) the local image piece, and has no way to
address other pieces: NO SHARED MEMORY

® This is what makes distributed memory programming
MUCH harder than shared-memory programming

" A
Boundaries!

® One of the problems now is: what happens at the
boundaries/edges of the image tiles?

®m Process #1 needs pixels from
process #2

B Process #2 needs pixels from
process #1

m But processes cannot share
memory because they're on
different systems:

With multiple threads all on the

same system, there is no notion
that a thread can’t see some data!

In fact, we use threads because
we want them to see the data

But now we’re forced to use
processes, and on different
process #2 machines to boot

"
Message-Passing

B Since processes cannot share memory, they
have to exchange messages

“here are the pixels you need from me, give me the
ones | need from you”

® This type of programming is called “message-
passing”
m Uses network communication
e.g., socket and TCP

® So your code will have special function calls:
Send(...)
Receive(...)

® \We're getting further away from “simple” shared-
memory programming

"
SPMD Program

® So at this point, we could
implement 8 different programs

start them up somehow on different nodes of our
cluster (for instance)

have them all somehow identify their left and right
neighbors, if any

® Turns out that this is really cumbersome

And if | want to use 1000 processes, | have to write
1000 programs?

® Typically one uses/implements the notion of a
process’ rank

" A
Process Ranks

® To identify the processes participating in the
computation, each process is assigned an index
from O to N-1

®m Each process can find out what its rank is and
how many processes there are in total

" A
Communication Patterns

® Process 0 will send to 1 and receive from 1

® Process 1 will send to 0, receive from 0O, send to 2, and
receive from 2

B Process 7 will receive from 6 and send to 6

"
SPMD Programming

m |[f every process can find out its rank and the total number
of processes, then one can write a Single Program to
operate on Multiple pieces of Data simultaneously (SPMD):

int main() {

if (my_rank() == 0) {
// talk to my below neighbor

} else if (my_rank() == num_processes() -1) {
// talk to my above neighbor

} else {
// talk to my above and below neighbors

}

}

Ranks and Number of Processes

® For now we’re going to assume we have
the my rank() and the num_processes()
functions, and the all the logistics of
starting up the processes is taken care of

The same assumption that we can make with
OpenMP within a single machine

m But this can also be implemented by hand
If necessary

® The way to write distributed memory
programs is to rely on process ranks

"
Writing the SPMD Program

® The pseudo-code of the SPMD program
could then look like

int main() {
int M = N/num_processes(); // assumed to be integer!
int original_image[M][N];
int new_image[M][N];

// load my part of the image from disk

/[compute all the pixels that do not require communication
// send border pixels to my neighbor(s)

Il receive border pixels from my neighbors()

// compute the remaining pixels

// save the new image to file in orderly fashion

"
Writing the SPMD Program

® For now, let’'s ignore the issue of loading/
writing files to disk

There are a lot of options here, simple/slow
ones, and complex/fast ones

m | et’'s focus on computation and
communication

"
Computing the “easy” pixels

Can be computed
L] without communication

]

1 Requires pixels from neighbors

(note that process 0 and
process N-1 can compute
one more row than the
others without any
communication

"
Computing the “easy?” pixels

for (j=0; j<N; j++) {
if (my_rank() == 0) {// top process can compute an extra row
new_image[0][j] = f (original_image|[0][j],
original_image[0][j-1], original_image[0][j+1],
original_image[1][j]);
}
if (my_rank() == num_processes()-1) { // bottom process can compute
/[an extra row
new_image[M-1][j] = f (original_image[M-1][j],
original_image[M-1][j-1], original _image[M-1][j+1],
original_image[M-2][j]);
}
for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows
new_imagel[i][j] = f (original_imageli][j],
original_image[i+1][j], original_imageli-1][j],
original_imageli][j-1], original_imageli][j+1]);

" A
Global/Local Index

® One of the reason why distributed memory
programming is difficult is because of the
discrepancy between “global” and “local”
indices

® \When | think “globally” of the whole image,

| know where pixel at coordinates
(100,100) is

m But when | write the code, | will not
reference the pixel as image[100][100]!

m | et's look at this on an example

'_
Global/Local Index

Process #0

Process #1

®m The red pixel's global coordinates are (5,1)
= The pixel on the 6th row and the 2nd column of the big array
m But when Process #1 references it, it must use coordinates (1,1)

= The pixel on the 2nd row and the 2nd column of the tile that’s stored in
Process #1

'_
Global/Local Index

Process #0

Process #1
// Shared-Memory // Distributed-Memory
double array[8][8]; double array[4][8];

array[5][1] = 12; array[1][1] = 12;

"
Message Passing

m | et's assume that we have a send()
function that takes as argument

The rank of the destination process
An address in local memory
A size (in bytes)
m [et's assume that we have a recv()
function that takes as argument
An address in local memory
A size (in bytes)

" J———
A Process’ Memory

original_image: MxN

} sent to above neighbor

> not communicated

} sent to below neighbor

buffer_top: 1xN
(LT T T I T T T T T T T T T T T T I [T 1} receivediromabove neighbor

buffer_bottom: 1xN
(T T T T T T T T T T T T TTTTT T]} received from below neighbor

new_image: MxN

} updated with received data

- updated w/o using received data

} updated with received data

"
Sending/Receiving Pixels

double buffer top[N], buffer _bottom[N];

if (my_rank() '=0){ // receive from above neighbor
send(my_rank()-1,&(original _image[0][0]),sizeof(double)*N);
recv(buffer_top, sizeof(double)*N);

}

if (my_rank() '= num_processes()-1){ // receive from below neighbor
send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N);
recv(buffer_bottom, sizeof(double)*N);

}

// assumes “non-blocking” sending

"
Computing Remaining Pixels

if (my_rank() !'=0){ // update top pixels
for (j=0; j<N; j++) {
new_imageli][j] = f (original_imageli][j],
original_image[i+1][j], buffer_top[O0][j],
original_imagel[i][j-1], original_imageli][j+1]);

if (my_rank() '= N-1){ // update bottom pixels
for (j=0; j<N; j++) {
new_imageli][j] = f (original_imageli][j],
buffer_bottom[0][j], original_image[i+1][j],
original_imagel[i][j-1], original_imageli][j+1]);

" A
We’re done!

m At this point, we have written the whole code
® \What's missing is I/O:

Read the image in

Write the image out

® Dealing with 1/O (efficiently) is a difficult problem, and we
won't really talk about it in depth

® And of course we need to use a tool that provides the
my_rank(), the num_processors(), the send() and the recv()
functions

® Each process allocates 1xN + 1xN + 2(M/P)xN = (2M/
P+2)N pixels, where P is the number of processors

® Therefore, the total number of pixels allocated is: 2ZMN +
2NP

2NP extra pixels allocated than in the sequential version
But it’s insignificant when spread across multiple systems

The Full Code

Distributed
Memory

N
—

Sequential

int main() {
inti, j;
int original_image[N][N], new_image[N][N];
for (i=1; I<M-1; i++)
for (j=1;) < M-1; j++)
new_imageli][j] = f (original_imageli][j], original_imagel[i+1]
[i], original_image[i-1][j], original_image[il[j-1], original_image[i]

[i+11);
}

int main() {

inti, j, M = N/num_processes(); // assumed to be integer!

int original_image[M][N], new_image[M][N];

double buffer_top[M], buffer_bottom[M];

for (j=0; i<N; j++) {

if (my_rank() == 0) { // top process can compute an extra row
new_image[0][j] = f (original_image[0][j], original_image[0][j-11,

original_image[0][j+1], original_image[1][j]);

if (my_rank() == num_processes()-1) { // bottom process can compute an
extra row
new_image[M-1][j] = f (original_image[M-1][j], original_image[M-1][j-1],
original_image[M-1][j+1], original_image[M-2][j]);

}
for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows
new_imageli][j] = f (original_imageli][j], original_image[i+1][j],
original_image[i-1][j], original_imageli][j-1], original_image][i][j+1]);

}

if (my_rank() !=0){ // receive from above neighbor
send(my_rank()-1,&(original_image[0][0]),sizeof(double)*N);
recv(buffer_top, sizeof(double)*N);

if (my_rank() = num_processes()-1){ // receive from below neighbor
send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N);
recv(buffer_bottom, sizeof(double)*N);

}
if (my_rank() = 0) {
for (j=0; j<N; j++){
new_imageli][jl = f (original_imageli][j], original_imagel[i+1][j], buffer_top[0]
[i], original_imagel[il[j-1], original_imagel[il[j+1]);

// update top pixels

}
if (my_rank() '= N-1) {
for (j=0; j<N; j++){
new_imageli][jl = f (original_imageli][j], buffer_bottom[O][j],
original_imageli+1][j], original_imagel[i][j-1], original_imagel[i][j+1]);

}
}

// update bottom pixels

The Full Code

Distributed
Memory

Sequential

int maln() { _7

\o? 6
int orlglnal image[N][N], new |mage[N][N] Q A

for (i=1; i<M-1; i++) @

for (j=1; j<|V|1 jtt)
new_imageli][j] = f (original_imagel[i][j], or|g|
[i], original_image[i-1][j], original_imageli][j-1], origina 5

[+11); -,
}

y ; 'i (my_rank() '= N-1) {

int main() {
inti, j, M = N/num_processes(); // assumed to be integer!
int original_image[M][N], new_image[M][N];
double buffer_top[M], buffer_bottom[M];
for (j=0; i<N; j++) {
if (my_rank() == 0) {// top prog#=N
new_image[0][j] = f (origing””
original_image[0][j+1], origi -

an compute an extra row
"] original_image[0][j-1],

if (my_rank() == nurg
extra row v

Q% " RN process can compute an
O

new_image[M4 \0 (%) ioriginal_image[M-1][j-1],
original_imag a K 4
for (i=1 S\O QO the “middle” M-2 rows
neys b 0 =il orlglnal image[i+1][jl,
origing®”" QQ . \ orlglnal imageli][j+1]);
1y 4
- \0 § _4rom above neighbor
- 4 (b~ Zmage[0][0]),sizeof(double)*N);
S AN
0 6 dfocesses()-1){ // receive from below neighbor
0 (orlgmal image[M-1][0]), sizeof(double)*N);
(b' \O S|zeof(double)*N)
= 0) { /I update top pixels

AN) {
P age[|][1] = f (original_imageli][j], original_imagel[i+1][j], buffer_top[0]
#hal_imageli][j-1], original_imageli][j+1]);
af

// update bottom pixels
for (j=0; j<N; j++) {
new_imageli][jl = f (original_imageli][j], buffer_bottom[O][j],
original_imageli+1][j], original_imagel[i][j-1], original_imagel[i][j+1]);

}
}

" A
Too hard?

m Clearly the previous example is a bit scary

® Many researchers in academia and industry
are trying to make this better

Tons of libraries written by smart people so that
you don’t have to be

New languages / compilers

New programming models
= Map-Reduce anyone?

New ways to think of applications

"
Distributed-Memory Computing

m Bottom-line: Distributed-Memory computing is not
easy, but it's the only way to scale many
applications

® As a result”parallel computing platforms™ have
been built for many decades
So-called “supercomputers”
® The main idea:

Get a bunch of individual systems (commodity
computers, or cool custom computers)

Get a network (commodity switches, cool custom
interconnects)

Install software to make it possible to write/run program
and off we go....

" J
A host of parallel machines

® There are (have been) many kinds of parallel
machines

® For the last 12 years their performance has been
measured and recorded with the LINPACK
benchmark, as part of Top500

® |t is a good source of information
about what machines are = e 0 0
and how they have evolved

® Note that it's really about
“‘supercomputers”

http://www.top500.0org

What is Beowulf?

B An experiment in parallel computing systems

m Established vision of low cost, high end computing,
with public domain software (and led to software
development)

® Tutorials and book for best practice on how to build
such platforms |

® Today by Beowulf cluster
one means a commodity
cluster that runs Linux and &
GNU-type software |

B Project initiated by
T. Sterling and D. Becker
at NASA In 1994

"
The Prettiest Supercomputer?

http.//deqgiorgi.math.hr/~vsego/phun/
beautiful _supercomputer/

http://degiorgi.math.hr/~vsego/phun/beautiful_supercomputer/
http://degiorgi.math.hr/~vsego/phun/beautiful_supercomputer/

River-Water Cooled Supercomputer

® hitp://www.research.ibm.com/articles/
superMUC.shtml

\ N
! 3 N
N

P .

http://www.research.ibm.com/articles/superMUC.shtml
http://www.research.ibm.com/articles/superMUC.shtml

" A
Conclusion

® \Writing distributed memory code is much more complex
than shared memory code

One must identify what must be communicated
One must keep a mental picture of the memory across systems
In addition to all the concerns we have mentioned in class
® e.g., cache reuse, synchronization among threads
And the typical problems of shared memory are still there

m There can be “communication” deadlocks, race conditions,
efc.

® Big “supercomputers” are amazing and expensive
machines with a long and politically/economically-charged
history

® Almost all of you will write some type of distributed-

memory application (not necessarily High-Performance
Computing, but using the same concepts)

® |[f you're into all this, take ICS632

