
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Introduction to
Distributed-Memory
Computing

More Concurrency
 So far we have talked about concurrency “within a

box”
 Within a processor

 Pipelining
 Multiple functional units
 Instruction Level Parallelism
 Hyper-Threading

 Across processors
 Multi-proc systems
 Multi-core systems
 Multi-proc/core systems

 But this can only get us so far for many applications...

Toward Distributed Memory
 We saw that we go to concurrency for need of more

CPU cycles (i.e., we want to use all cores)
 But that’s often not enough and we can’t use a single

system anymore

 Reason #1: We need way more cycles than that in a
single machine

 Reason #2: We need way more RAM than that in a
single machine

 Solution: Use more than one machine

= f(, , ,)

Example: Image Processing Filter
 Say you want to apply a simple filter to a domain (image,

computational fluid dynamics, etc.)

Sample Stencil App Code
 int a[N][N], a_new[N][N];
 for (i=1; i<N-1; i++) {
 #pragma omp parallel for private(j)
 for (j=1; j<N-1; j++) {
 a_new[i][j] = f(a[i][j],
 a[i-1][j],a[i+1][j],
 a[i][j-1],a[i][j+1]);
 }
 }

Too Large?
 This is all well and good, but what if my array

requires 8GB of memory and I only have 1GB of
RAM?

 I could think of just relying on virtual memory
 This is bound to be very slow

 I could manage the reads and writes to disk
myself

 Could be a bit faster than virtual memory if I am really
clever, but would be complicated and still slow

 Called an “out of core” implementation
 Or, I could use 8 different machines with 1GB

RAMs and run fast without really ever swapping
between the memory and the disk!

Distributed Memory Programming

 So, I give you a bunch of individual hosts,
all connected via a network

 The big question is: How do we write code
for something like this?

 The application now consists of multiple
processes running on different machines
 Each process can consist of multiple threads!

 Let’s look at this on a picture

Distributed Memory Platform
hyper-threaded
processor core

dual-core chip dual-core system

L1 L1L1

Mem

L2
L1 L1

Distributed Memory Platform
hyper-threaded
processor core

dual-core chip dual-core system

L1 L1L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Cluster of dual-core systems

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

8-way Switch

Distributed Memory Program

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

8-way Switch

 8 processes
 Each process contains, for example, 4 threads

 2 threads are running on each core using hyper threading

Distributed Memory Program

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

8-way Switch

 Each process stores some data in the memory of its box

How do we even declare arrays?

 We cannot have a declaration of an NxN
array any more, because that would not fit
in memory

 Each process (running on a different
system) must handle an array of size N x
N/8
 Each process allocates memory for 1/8 of the

overall array
 This is the same kind of “cutting the image

into slabs” approach as we would used for
a shared-memory implementation...

Data Distribution

Data Distribution

Data Distribution

Mem

L2
L1 L1

Mem

L2
L1 L1

Mem

L2
L1 L1

process #1

process #2

process #3

 Each piece of the image is stored in the memory of a
different system

 A process running on one system can only “see” (i.e.,
address) the local image piece, and has no way to
address other pieces: NO SHARED MEMORY

 This is what makes distributed memory programming
MUCH harder than shared-memory programming

Boundaries!
 One of the problems now is: what happens at the

boundaries/edges of the image tiles?

process #1

process #2

 Process #1 needs pixels from
process #2

 Process #2 needs pixels from
process #1

 But processes cannot share
memory because they’re on
different systems:
 With multiple threads all on the

same system, there is no notion
that a thread can’t see some data!

 In fact, we use threads because
we want them to see the data

 But now we’re forced to use
processes, and on different
machines to boot

Message-Passing
 Since processes cannot share memory, they

have to exchange messages
 “here are the pixels you need from me, give me the

ones I need from you”
 This type of programming is called “message-

passing”
 Uses network communication

 e.g., socket and TCP
 So your code will have special function calls:

 Send(...)
 Receive(...)

 We’re getting further away from “simple” shared-
memory programming

SPMD Program
 So at this point, we could

 implement 8 different programs
 start them up somehow on different nodes of our

cluster (for instance)
 have them all somehow identify their left and right

neighbors, if any
 Turns out that this is really cumbersome

 And if I want to use 1000 processes, I have to write
1000 programs?

 Typically one uses/implements the notion of a
process’ rank

Process Ranks
 To identify the processes participating in the

computation, each process is assigned an index
from 0 to N-1

 Each process can find out what its rank is and
how many processes there are in total

0
1
2
3
4
5
6
7

Communication Patterns

 Process 0 will send to 1 and receive from 1
 Process 1 will send to 0, receive from 0, send to 2, and

receive from 2
 ...
 Process 7 will receive from 6 and send to 6

0
1
2
3
4
5
6
7

SPMD Programming
 If every process can find out its rank and the total number

of processes, then one can write a Single Program to
operate on Multiple pieces of Data simultaneously (SPMD):

int main() {

 if (my_rank() == 0) {
 // talk to my below neighbor
 } else if (my_rank() == num_processes() -1) {
 // talk to my above neighbor
 } else {
 // talk to my above and below neighbors
 }
}

Ranks and Number of Processes

 For now we’re going to assume we have
the my_rank() and the num_processes()
functions, and the all the logistics of
starting up the processes is taken care of
 The same assumption that we can make with

OpenMP within a single machine
 But this can also be implemented by hand

if necessary
 The way to write distributed memory

programs is to rely on process ranks

Writing the SPMD Program

 The pseudo-code of the SPMD program
could then look like

int main() {
 int M = N/num_processes(); // assumed to be integer!
 int original_image[M][N];
 int new_image[M][N];

 // load my part of the image from disk
 // compute all the pixels that do not require communication
 // send border pixels to my neighbor(s)
 // receive border pixels from my neighbors()
 // compute the remaining pixels
 // save the new image to file in orderly fashion
}

Writing the SPMD Program

 For now, let’s ignore the issue of loading/
writing files to disk
 There are a lot of options here, simple/slow

ones, and complex/fast ones
 Let’s focus on computation and

communication

Computing the “easy” pixels

Can be computed
without communication

Requires pixels from neighbors

N

M

(note that process 0 and
process N-1 can compute
one more row than the
others without any
communication

0

1

2

3

4

5

6

Computing the “easy” pixels

for (j=0; j<N; j++) {
 if (my_rank() == 0) { // top process can compute an extra row
 new_image[0][j] = f (original_image[0][j],
 original_image[0][j-1], original_image[0][j+1],
 original_image[1][j]);
 }
 if (my_rank() == num_processes()-1) { // bottom process can compute
 // an extra row
 new_image[M-1][j] = f (original_image[M-1][j],
 original_image[M-1][j-1], original_image[M-1][j+1],
 original_image[M-2][j]);
 }
 for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows
 new_image[i][j] = f (original_image[i][j],
 original_image[i+1][j], original_image[i-1][j],
 original_image[i][j-1], original_image[i][j+1]);
}

Global/Local Index

 One of the reason why distributed memory
programming is difficult is because of the
discrepancy between “global” and “local”
indices

 When I think “globally” of the whole image,
I know where pixel at coordinates
(100,100) is

 But when I write the code, I will not
reference the pixel as image[100][100]!

 Let’s look at this on an example

Global/Local Index

Process #0

Process #1

 The red pixel’s global coordinates are (5,1)
 The pixel on the 6th row and the 2nd column of the big array

 But when Process #1 references it, it must use coordinates (1,1)
 The pixel on the 2nd row and the 2nd column of the tile that’s stored in

Process #1

Global/Local Index

Process #1

// Shared-Memory
double array[8][8];
array[5][1] = 12;

// Distributed-Memory
double array[4][8];
array[1][1] = 12;

Process #0

Message Passing

 Let’s assume that we have a send()
function that takes as argument
 The rank of the destination process
 An address in local memory
 A size (in bytes)

 Let’s assume that we have a recv()
function that takes as argument
 An address in local memory
 A size (in bytes)

A Process’ Memory
original_image: MxN

new_image: MxN

buffer_top: 1xN

buffer_bottom: 1xN

sent to above neighbor

sent to below neighbor

not communicated

updated w/o using received data

received from above neighbor

received from below neighbor

updated with received data

updated with received data

Sending/Receiving Pixels
double buffer_top[N], buffer_bottom[N];

if (my_rank() != 0) { // receive from above neighbor
 send(my_rank()-1,&(original_image[0][0]),sizeof(double)*N);
 recv(buffer_top, sizeof(double)*N);
}
if (my_rank() != num_processes()-1) { // receive from below neighbor
 send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N);
 recv(buffer_bottom, sizeof(double)*N);
}

// assumes “non-blocking” sending

Computing Remaining Pixels
if (my_rank() != 0) { // update top pixels
 for (j=0; j<N; j++) {
 new_image[i][j] = f (original_image[i][j],
 original_image[i+1][j], buffer_top[0][j],
 original_image[i][j-1], original_image[i][j+1]);
 }
}

if (my_rank() != N-1) { // update bottom pixels
 for (j=0; j<N; j++) {
 new_image[i][j] = f (original_image[i][j],
 buffer_bottom[0][j], original_image[i+1][j],
 original_image[i][j-1], original_image[i][j+1]);
 }
}

We’re done!
 At this point, we have written the whole code
 What’s missing is I/O:

 Read the image in
 Write the image out

 Dealing with I/O (efficiently) is a difficult problem, and we
won’t really talk about it in depth

 And of course we need to use a tool that provides the
my_rank(), the num_processors(), the send() and the recv()
functions

 Each process allocates 1xN + 1xN + 2(M/P)xN = (2M/
P+2)N pixels, where P is the number of processors

 Therefore, the total number of pixels allocated is: 2MN +
2NP

 2NP extra pixels allocated than in the sequential version
 But it’s insignificant when spread across multiple systems

The Full Code
int main() {
 int i, j, M = N/num_processes(); // assumed to be integer!
 int original_image[M][N], new_image[M][N];
 double buffer_top[M], buffer_bottom[M];
 for (j=0; i<N; j++) {
 if (my_rank() == 0) { // top process can compute an extra row
 new_image[0][j] = f (original_image[0][j], original_image[0][j-1],
original_image[0][j+1], original_image[1][j]);
 }
 if (my_rank() == num_processes()-1) { // bottom process can compute an
extra row
 new_image[M-1][j] = f (original_image[M-1][j], original_image[M-1][j-1],
original_image[M-1][j+1], original_image[M-2][j]);
 }
 for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows
 new_image[i][j] = f (original_image[i][j], original_image[i+1][j],
original_image[i-1][j], original_image[i][j-1], original_image[i][j+1]);
 }
 if (my_rank() != 0) { // receive from above neighbor
 send(my_rank()-1,&(original_image[0][0]),sizeof(double)*N);
 recv(buffer_top, sizeof(double)*N);
 }
 if (my_rank() != num_processes()-1) { // receive from below neighbor
 send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N);
 recv(buffer_bottom, sizeof(double)*N);
 }
 if (my_rank() != 0) { // update top pixels
 for (j=0; j<N; j++) {
 new_image[i][j] = f (original_image[i][j], original_image[i+1][j], buffer_top[0]
[j], original_image[i][j-1], original_image[i][j+1]);
 }
 }
 if (my_rank() != N-1) { // update bottom pixels
 for (j=0; j<N; j++) {
 new_image[i][j] = f (original_image[i][j], buffer_bottom[0][j],
original_image[i+1][j], original_image[i][j-1], original_image[i][j+1]);
 }
 }
}

int main() {
 int i, j;
 int original_image[N][N], new_image[N][N];
 for (i=1; I<M-1; i++)
 for (j=1; j < M-1; j++)
 new_image[i][j] = f (original_image[i][j], original_image[i+1]
[j], original_image[i-1][j], original_image[i][j-1], original_image[i]
[j+1]);
}

Sequential

Distributed
Memory

The Full Code
int main() {
 int i, j, M = N/num_processes(); // assumed to be integer!
 int original_image[M][N], new_image[M][N];
 double buffer_top[M], buffer_bottom[M];
 for (j=0; i<N; j++) {
 if (my_rank() == 0) { // top process can compute an extra row
 new_image[0][j] = f (original_image[0][j], original_image[0][j-1],
original_image[0][j+1], original_image[1][j]);
 }
 if (my_rank() == num_processes()-1) { // bottom process can compute an
extra row
 new_image[M-1][j] = f (original_image[M-1][j], original_image[M-1][j-1],
original_image[M-1][j+1], original_image[M-2][j]);
 }
 for (i=1; i<M-1; i++) // Everybody computes the “middle” M-2 rows
 new_image[i][j] = f (original_image[i][j], original_image[i+1][j],
original_image[i-1][j], original_image[i][j-1], original_image[i][j+1]);
 }
 if (my_rank() != 0) { // receive from above neighbor
 send(my_rank()-1,&(original_image[0][0]),sizeof(double)*N);
 recv(buffer_top, sizeof(double)*N);
 }
 if (my_rank() != num_processes()-1) { // receive from below neighbor
 send(my_rank()+1, &(original_image[M-1][0]), sizeof(double)*N);
 recv(buffer_bottom, sizeof(double)*N);
 }
 if (my_rank() != 0) { // update top pixels
 for (j=0; j<N; j++) {
 new_image[i][j] = f (original_image[i][j], original_image[i+1][j], buffer_top[0]
[j], original_image[i][j-1], original_image[i][j+1]);
 }
 }
 if (my_rank() != N-1) { // update bottom pixels
 for (j=0; j<N; j++) {
 new_image[i][j] = f (original_image[i][j], buffer_bottom[0][j],
original_image[i+1][j], original_image[i][j-1], original_image[i][j+1]);
 }
 }
}

int main() {
 int i, j;
 int original_image[N][N], new_image[N][N];
 for (i=1; i<M-1; i++)
 for (j=1; j < M-1; j++)
 new_image[i][j] = f (original_image[i][j], original_image[i+1]
[j], original_image[i-1][j], original_image[i][j-1], original_image[i]
[j+1]);
}

Sequential

Distributed
Memory

Plus
 #p

rag
ma o

mp a
rou

nd
 fo

r lo
op

s

ev
ery

whe
re

 to
 us

e m
ult

ipl
e c

ore
s

Too hard?

 Clearly the previous example is a bit scary
 Many researchers in academia and industry

are trying to make this better
 Tons of libraries written by smart people so that

you don’t have to be
 New languages / compilers
 New programming models

 Map-Reduce anyone?
 New ways to think of applications

Distributed-Memory Computing
 Bottom-line: Distributed-Memory computing is not

easy, but it’s the only way to scale many
applications

 As a result“parallel computing platforms” have
been built for many decades

 So-called “supercomputers”
 The main idea:

 Get a bunch of individual systems (commodity
computers, or cool custom computers)

 Get a network (commodity switches, cool custom
interconnects)

 Install software to make it possible to write/run program
 and off we go....

A host of parallel machines
 There are (have been) many kinds of parallel

machines
 For the last 12 years their performance has been

measured and recorded with the LINPACK
benchmark, as part of Top500

 It is a good source of information
about what machines are
and how they have evolved

 Note that it’s really about
“supercomputers”

 http://www.top500.org

What is Beowulf?
An experiment in parallel computing systems
Established vision of low cost, high end computing,

with public domain software (and led to software
development)

Tutorials and book for best practice on how to build
such platforms

Today by Beowulf cluster
one means a commodity
cluster that runs Linux and
GNU-type software

Project initiated by
T. Sterling and D. Becker
at NASA in 1994

The Prettiest Supercomputer?

http://degiorgi.math.hr/~vsego/phun/
beautiful_supercomputer/

http://degiorgi.math.hr/~vsego/phun/beautiful_supercomputer/
http://degiorgi.math.hr/~vsego/phun/beautiful_supercomputer/

River-Water Cooled Supercomputer

 http://www.research.ibm.com/articles/
superMUC.shtml

http://www.research.ibm.com/articles/superMUC.shtml
http://www.research.ibm.com/articles/superMUC.shtml

Conclusion
 Writing distributed memory code is much more complex

than shared memory code
 One must identify what must be communicated
 One must keep a mental picture of the memory across systems
 In addition to all the concerns we have mentioned in class

 e.g., cache reuse, synchronization among threads
 And the typical problems of shared memory are still there

 There can be “communication” deadlocks, race conditions,
etc.

 Big “supercomputers” are amazing and expensive
machines with a long and politically/economically-charged
history

 Almost all of you will write some type of distributed-
memory application (not necessarily High-Performance
Computing, but using the same concepts)

 If you’re into all this, take ICS632

