Hardware

Concurrency within
a Core

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" J
Concurrency within a Core

m So far, we've assumed that one thread executes
sequentially on a core

And it's fine to think of it in this way while developing multi-
threaded code

® But, under the cover, there is a lot of concurrency in
the hardware

® This is done by having many hardware components in
the core that can work concurrently while executing
the instruction stream of one or even two threads

® |n this set of lecture notes, we just review the major

techniques (some extremely briefly) for your general
culture/understanding

"
Major Techniques

®m Concurrency between instructions of a single
thread: Instruction-Level Parallelism (ILP)

Pipelining

Out-of-order Execution
Superscalar

Vector instructions

®m Concurrency between instructions of
multiple threads: Hyperthreading

"
ILP: Pipelining

® Having all instructions doable in the same number of stages of

the same durations is the RISC idea

m Example: MIPS architecture (See THE architecture book by

Patterson and Hennessy)
S stages
Instruction Fetch (IF)
Instruction Decode (ID)
Instruction Execute (EX)
Memory accesses (MEM)
Register Write Back (WB)

Concurrent execution
of two instructions

Each stage takes one clock cycle /

LD R2, 12(R3)

w—— | |

"
ILP: Pipelining

® Modern processors have deep pipelines
®m Example: Intel’s Saltwell architecture

13 cycle mispredict

i
IF3 [ID1 [ID2 JID3 |

Instruction Fetch Instruction Decode

Saltwell

ISC__[IS |IRF JAG JDCT | EEI

® The deeper the pipeline, the more opportunity for
performance, but one has to avoid dreaded “pipeline stalls”

e.g., due to data dependencies between instructions

—

" A
ILP: Out-of-order Execution

® Modern cores swap instructions at runtime to expose
more parallelism while preserving correctness

® The hardware fetches multiple instructions at once,
and decides (with an algorithm implemented in
hardware!!) how to reorder them to achieve better

performance

Typically, better use of the pipeline by dealing with data
dependencies

® This adds a lot of complexity to the hardware

And makes it even more difficult for us human to figure
out what our high-level, compiled code will actually be

going

" J
ILP: Superscalar

B The term superscalar is used to denote
cores that can execute more than one
instruction of a single thread at the same time
(at least partially)

m Extra hardware is added to the processor so
that multiple instructions can be issued and
executed during the same cycle

e.g., multiple ALUs
e.g., multiple pipelines

" B
ILP: Vector Units

® A functional unit that does element-wise operations on
multiple values with a single “vector instruction” that
operates on “vector registers” (data parallelism in hardware)

#elts #elts
AL AL

#elts adds in parallel

~
#elts

m All your compilers are now “vectorizing compilers” that will
transform some of your loops into “vectorized loops”

"
Major Techniques

m Concurrency between instructions of a single
thread: Instruction-Level Parallelism (ILP)

Pipelining

Out-of-order Execution
Superscalar

Vector instructions

® Concurrency between instructions of
multiple threads: Hyperthreading

"
Multi-threading

® Multi-threading has been around for years, so

what are we talking about

m Here we're talking about -
threads, often called Simu
Threading (SMT)

nere?
ardware Support for

taneous Multi-

® One can augment a core with additional hardware
to support multiple threads at once, so that we no
longer need to context-switch threads in and out!

e.g., that means muiltiple register files

® The idea is that one can duplicate some of the
hardware in the core (but not all, otherwise it's not
worth it) so that threads can happily co-exist

" A
Front-end vs. Execution code

® Conceptually, CPUs split the fetch-decode-
execute cycle into two big phases

Front-end: fetching/decoding/reordering of
Instruction

Execution core: executing bits and pieces of
Instructions in parallel using multiple hardware
components

" e.g., adders, etc.

m Both the front-end and the execution cores are
pipelined, superscalar, out-of-order, etc.

m | et’s look at the typical graphical depiction of a
processor running instructions

" J
Simplified Example Core

: : : : : : : : instructions
Front-end C OO0 flow
C I 11 this way
Execution
Core

B The front-end can issue four instructions to the execution
core simultaneously
4-stage pipeline
B The execution core has 8 functional units
each a 6-stage pipeline

" JE
Simplified Example Core

1] . :
C I] Instructions
Front-end . flow
B T] this way
Execution
Core
® The front-end is about to issue 2 instructions
® The cycle after it will issue 3
® The cycle after it will issue only 1
®m The cycle after it will issue 2
®m There is complex hardware that decides what can be issued

" J
Simplified Example Core

11 . .
C I] Instructions
Front-end . flow
B] this way
Execution — = ==
Core — —]
1 1
m At the current cycle, two functional units are used
®m Next cycle one will be used
® And soon
® The white slots are “pipeline bubbles”: lost opportunity for doing useful work

Due to low instruction-level parallelism in the program

" J—
Multiple Threads in Memory

RAM

®m Four threads in memory

® |n a “traditional” architecture, only
the “red” thread is executing

® When the O/S context switches it
out, then another thread gets to

= run

]
1]
[
[-

HON
[RCE

Core

11
[0
11

i
NI

"
Multi-core system

VR FEEEEE

Core Core

" A
Waste of Hardware

®m Both in the single-core and the dual-core systems there
are many white slots

® The fraction of white slots in the system is the fraction of
the hardware that is wasted
Adding a core does not reduce wastage

m Challenge: use more of the white slots!

"
Super-threading

® The idea behind “super-threading” is to allow
instructions from multiple threads to be “in” the same
core simultaneously

I I I EE . I .
I ppm N N I e
I I I EE . I .
Il am B s I e
Il I I I I . I I e
Il o N e B e I N e
I I Il S I . I I .
Il o BN e BN s Im BN e
Il o N aa B e I N e

o | — | — |

COC] B

o — | — —

| o | o | —

= = =

Super-threading

Super-threading is also called “time-sliced multithreading”
The core is then called a multithreaded core
Requires more hardware cleverness

logic switches at each cycle

Leads to less waste

e.g., a thread can run during a cycle while another thread is
waiting for the memory

Super-threading “just” provides a finer grain of interleaving
But there is a restriction

Each stage of the front end or the execution core only runs
instructions from ONE thread!

Therefore, super-threading does not help with poor
iInstruction parallelism within one thread

It does not reduce bubbles within a row

"
Hyper-threading

® The idea behind “hyper-threading” is to allow
instructions from multiple threads to execute
simultaneously on the same core

0
I |00
I

i
Il
WU OO
I
1
Il
I

"
Hyper-threading

m Requires even more hardware cleverness
logic switches within each cycle

® |n the previous example we only showed two threads executing
simultaneously

Note that there were still white slots

m |n fact, Intel's most talked about hyper-threaded processor is only
for two threads

Intel’s hyper-threading only adds 5% to the die area,
therefore the performance benefit is worth it

Some people argue that “two” is not “hyper” ©

Some “supercomputer” projects have built “massively
multithreaded processors” that have hardware support for
many more threads than 2

m Hyper-threading provides the finest level of interleaving
®mFrom the OS perspective, there are two “logical” cores
Less performance than two physical cores
Less wastage than with two physical cores

"
My Linux Server (Istopo)

Machine (2465 total) Two processors (one per “socket”)

T T T e T T T e s o "J*:’

A rrrlv~J‘—:. X = T =g

', NUMANode P#0 (12GB) NUMANode P#1 (12GB)

Package P#1 Package P#0

L3 (8192KB)

L3 (8192KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

4 ! Core P#0

Core P#1

Core P#2

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

PU P#0

PU P#2

PU P#4

PU P#6

Core P#0

Core P#1

Core P#2

Core P#3

PU P#8

PU P#10

PU P#12

PU P#14

PU P#1

PU P#3

PU P#5

PU P#7

PU P#9

PU P#11

PU P#13

PU P#15

Total: 8 physical cores, each of them hyperthreaded
Looks like 16 physical cores to the OS

"
How Good is HyperThreading?

m |deally, a hyperthreaded core would run two
threads as fast as one thread

® |n practice, a single hyperthreaded core is not as
fast as two cores

® And it depends on what the threads are doing

m | et’s look at results on my laptop for a simple
OpenMP parallelization of

#pragma omp parallel for private(i, j, k)
for (i=0; i < N; i++)
for (k=0; k < N; k++)
for (j=0; j < N; j++)
Cl[i][3] += A[i][k] * B[k][]]

"
How Good is Hyperthreading?

. A~

Parallel speedup
(O] NAN Ul

N
]

=
1

o
1

0 2 4 3) 8 10 12 14
Number of Cores

"
HyperThreading

®m Hyperthreading is pure hardware and is
transparent to the OS (who just sees twice as
many cores)

B |ts effectiveness really depends on what threads
do, and it's hard to predict it

® The more different stuff threads do, the better it is
Our matrix-multiply case was thus not great

m |t is often disabled for HPC performance
measurements

m But it's sufficiently worthwhile to be a standard
features in most CPUs

" A
Conclusion

m As a developer, luckily, all these things are

transparent to you and you typically benefit from
them to some extent

m |f you're into HPC, then you need to know what's
going on so that you write your code in a way
that will maximize core concurrency

e.g., write loops that you know the compiler will
vectorize even though from your perspective they are

sequential!
B See a computer architecture course for full

details/explanations about the glory of our
modern cores

