
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Hardware
Concurrency within
a Core

Concurrency within a Core
 So far, we’ve assumed that one thread executes

sequentially on a core
 And it’s fine to think of it in this way while developing multi-

threaded code
 But, under the cover, there is a lot of concurrency in

the hardware
 This is done by having many hardware components in

the core that can work concurrently while executing
the instruction stream of one or even two threads

 In this set of lecture notes, we just review the major
techniques (some extremely briefly) for your general
culture/understanding

Major Techniques

 Concurrency between instructions of a single
thread: Instruction-Level Parallelism (ILP)
 Pipelining
 Out-of-order Execution
 Superscalar
 Vector instructions

 Concurrency between instructions of
multiple threads: Hyperthreading

ILP: Pipelining
 Having all instructions doable in the same number of stages of

the same durations is the RISC idea
 Example: MIPS architecture (See THE architecture book by

Patterson and Hennessy)
 5 stages

 Instruction Fetch (IF)
 Instruction Decode (ID)
 Instruction Execute (EX)
 Memory accesses (MEM)
 Register Write Back (WB)

 Each stage takes one clock cycle

IF ID EX MEM WB

IF ID EX MEM WB

LD R2, 12(R3)

DADD R3, R5, R6

Concurrent execution
of two instructions

ILP: Pipelining
 Modern processors have deep pipelines
 Example: Intel’s Saltwell architecture

 The deeper the pipeline, the more opportunity for
performance, but one has to avoid dreaded “pipeline stalls”
 e.g., due to data dependencies between instructions

ILP: Out-of-order Execution
 Modern cores swap instructions at runtime to expose

more parallelism while preserving correctness
 The hardware fetches multiple instructions at once,

and decides (with an algorithm implemented in
hardware!!) how to reorder them to achieve better
performance
 Typically, better use of the pipeline by dealing with data

dependencies
 This adds a lot of complexity to the hardware

 And makes it even more difficult for us human to figure
out what our high-level, compiled code will actually be
going

ILP: Superscalar

 The term superscalar is used to denote
cores that can execute more than one
instruction of a single thread at the same time
(at least partially)

 Extra hardware is added to the processor so
that multiple instructions can be issued and
executed during the same cycle
 e.g., multiple ALUs
 e.g., multiple pipelines

ILP: Vector Units
 A functional unit that does element-wise operations on

multiple values with a single “vector instruction” that
operates on “vector registers” (data parallelism in hardware)

#elts adds in parallel+

.

. . .

#elts#elts

#elts

 All your compilers are now “vectorizing compilers” that will
transform some of your loops into “vectorized loops”

Major Techniques

 Concurrency between instructions of a single
thread: Instruction-Level Parallelism (ILP)
 Pipelining
 Out-of-order Execution
 Superscalar
 Vector instructions

 Concurrency between instructions of
multiple threads: Hyperthreading

Multi-threading
 Multi-threading has been around for years, so

what are we talking about here?
 Here we’re talking about Hardware Support for

threads, often called Simultaneous Multi-
Threading (SMT)

 One can augment a core with additional hardware
to support multiple threads at once, so that we no
longer need to context-switch threads in and out!

 e.g., that means multiple register files
 The idea is that one can duplicate some of the

hardware in the core (but not all, otherwise it’s not
worth it) so that threads can happily co-exist

Front-end vs. Execution code
 Conceptually, CPUs split the fetch-decode-

execute cycle into two big phases
 Front-end: fetching/decoding/reordering of

instruction
 Execution core: executing bits and pieces of

instructions in parallel using multiple hardware
components

 e.g., adders, etc.
 Both the front-end and the execution cores are

pipelined, superscalar, out-of-order, etc.
 Let’s look at the typical graphical depiction of a

processor running instructions

Simplified Example Core

Front-end

Execution
Core

 The front-end can issue four instructions to the execution
core simultaneously
 4-stage pipeline

 The execution core has 8 functional units
 each a 6-stage pipeline

instructions
flow
this way

Simplified Example Core

Front-end

Execution
Core

 The front-end is about to issue 2 instructions
 The cycle after it will issue 3
 The cycle after it will issue only 1
 The cycle after it will issue 2
 There is complex hardware that decides what can be issued

instructions
flow
this way

Simplified Example Core

Front-end

Execution
Core

 At the current cycle, two functional units are used
 Next cycle one will be used
 And so on
 The white slots are “pipeline bubbles”: lost opportunity for doing useful work

 Due to low instruction-level parallelism in the program

instructions
flow
this way

Multiple Threads in Memory

RAM

Core

 Four threads in memory
 In a “traditional” architecture, only

the “red” thread is executing
 When the O/S context switches it

out, then another thread gets to
run

Multi-core system

RAM

Core Core

Waste of Hardware

 Both in the single-core and the dual-core systems there
are many white slots

 The fraction of white slots in the system is the fraction of
the hardware that is wasted
 Adding a core does not reduce wastage

 Challenge: use more of the white slots!

Super-threading
 The idea behind “super-threading” is to allow

instructions from multiple threads to be “in” the same
core simultaneously

Super-threading
 Super-threading is also called “time-sliced multithreading”
 The core is then called a multithreaded core
 Requires more hardware cleverness

 logic switches at each cycle
 Leads to less waste

 e.g., a thread can run during a cycle while another thread is
waiting for the memory

 Super-threading “just” provides a finer grain of interleaving
 But there is a restriction

 Each stage of the front end or the execution core only runs
instructions from ONE thread!

 Therefore, super-threading does not help with poor
instruction parallelism within one thread
 It does not reduce bubbles within a row

Hyper-threading
 The idea behind “hyper-threading” is to allow

instructions from multiple threads to execute
simultaneously on the same core

Hyper-threading
Requires even more hardware cleverness

logic switches within each cycle
 In the previous example we only showed two threads executing

simultaneously
Note that there were still white slots

 In fact, Intel’s most talked about hyper-threaded processor is only
for two threads

 Intel’s hyper-threading only adds 5% to the die area,
therefore the performance benefit is worth it

 Some people argue that “two” is not “hyper”
Some “supercomputer” projects have built “massively

multithreaded processors” that have hardware support for
many more threads than 2

Hyper-threading provides the finest level of interleaving
From the OS perspective, there are two “logical” cores

Less performance than two physical cores
Less wastage than with two physical cores

My Linux Server (lstopo)
Two processors (one per “socket”)

 Total: 8 physical cores, each of them hyperthreaded
Looks like 16 physical cores to the OS

How Good is HyperThreading?
 Ideally, a hyperthreaded core would run two

threads as fast as one thread
 In practice, a single hyperthreaded core is not as

fast as two cores
 And it depends on what the threads are doing
 Let’s look at results on my laptop for a simple

OpenMP parallelization of

#pragma omp parallel for private(i,j,k)
for (i=0; i < N; i++)
 for (k=0; k < N; k++)
 for (j=0; j < N; j++)
 C[i][j] += A[i][k] * B[k][j]

How Good is Hyperthreading?

HyperThreading

 Hyperthreading is pure hardware and is
transparent to the OS (who just sees twice as
many cores)

 Its effectiveness really depends on what threads
do, and it’s hard to predict it

 The more different stuff threads do, the better it is
 Our matrix-multiply case was thus not great

 It is often disabled for HPC performance
measurements

 But it’s sufficiently worthwhile to be a standard
features in most CPUs

Conclusion

 As a developer, luckily, all these things are
transparent to you and you typically benefit from
them to some extent

 If you’re into HPC, then you need to know what’s
going on so that you write your code in a way
that will maximize core concurrency
 e.g., write loops that you know the compiler will

vectorize even though from your perspective they are
sequential!

 See a computer architecture course for full
details/explanations about the glory of our
modern cores

