
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Hardware
Concurrency within
a Core

Concurrency within a Core
 So far, we’ve assumed that one thread executes

sequentially on a core
 And it’s fine to think of it in this way while developing multi-

threaded code
 But, under the cover, there is a lot of concurrency in

the hardware
 This is done by having many hardware components in

the core that can work concurrently while executing
the instruction stream of one or even two threads

 In this set of lecture notes, we just review the major
techniques (some extremely briefly) for your general
culture/understanding

Major Techniques

 Concurrency between instructions of a single
thread: Instruction-Level Parallelism (ILP)
 Pipelining
 Out-of-order Execution
 Superscalar
 Vector instructions

 Concurrency between instructions of
multiple threads: Hyperthreading

ILP: Pipelining
 Having all instructions doable in the same number of stages of

the same durations is the RISC idea
 Example: MIPS architecture (See THE architecture book by

Patterson and Hennessy)
 5 stages

 Instruction Fetch (IF)
 Instruction Decode (ID)
 Instruction Execute (EX)
 Memory accesses (MEM)
 Register Write Back (WB)

 Each stage takes one clock cycle

IF ID EX MEM WB

IF ID EX MEM WB

LD R2, 12(R3)

DADD R3, R5, R6

Concurrent execution
of two instructions

ILP: Pipelining
 Modern processors have deep pipelines
 Example: Intel’s Saltwell architecture

 The deeper the pipeline, the more opportunity for
performance, but one has to avoid dreaded “pipeline stalls”
 e.g., due to data dependencies between instructions

ILP: Out-of-order Execution
 Modern cores swap instructions at runtime to expose

more parallelism while preserving correctness
 The hardware fetches multiple instructions at once,

and decides (with an algorithm implemented in
hardware!!) how to reorder them to achieve better
performance
 Typically, better use of the pipeline by dealing with data

dependencies
 This adds a lot of complexity to the hardware

 And makes it even more difficult for us human to figure
out what our high-level, compiled code will actually be
going

ILP: Superscalar

 The term superscalar is used to denote
cores that can execute more than one
instruction of a single thread at the same time
(at least partially)

 Extra hardware is added to the processor so
that multiple instructions can be issued and
executed during the same cycle
 e.g., multiple ALUs
 e.g., multiple pipelines

ILP: Vector Units
 A functional unit that does element-wise operations on

multiple values with a single “vector instruction” that
operates on “vector registers” (data parallelism in hardware)

#elts adds in parallel+

.

. . .

#elts#elts

#elts

 All your compilers are now “vectorizing compilers” that will
transform some of your loops into “vectorized loops”

Major Techniques

 Concurrency between instructions of a single
thread: Instruction-Level Parallelism (ILP)
 Pipelining
 Out-of-order Execution
 Superscalar
 Vector instructions

 Concurrency between instructions of
multiple threads: Hyperthreading

Multi-threading
 Multi-threading has been around for years, so

what are we talking about here?
 Here we’re talking about Hardware Support for

threads, often called Simultaneous Multi-
Threading (SMT)

 One can augment a core with additional hardware
to support multiple threads at once, so that we no
longer need to context-switch threads in and out!

 e.g., that means multiple register files
 The idea is that one can duplicate some of the

hardware in the core (but not all, otherwise it’s not
worth it) so that threads can happily co-exist

Front-end vs. Execution code
 Conceptually, CPUs split the fetch-decode-

execute cycle into two big phases
 Front-end: fetching/decoding/reordering of

instruction
 Execution core: executing bits and pieces of

instructions in parallel using multiple hardware
components

 e.g., adders, etc.
 Both the front-end and the execution cores are

pipelined, superscalar, out-of-order, etc.
 Let’s look at the typical graphical depiction of a

processor running instructions

Simplified Example Core

Front-end

Execution
Core

 The front-end can issue four instructions to the execution
core simultaneously
 4-stage pipeline

 The execution core has 8 functional units
 each a 6-stage pipeline

instructions
flow
this way

Simplified Example Core

Front-end

Execution
Core

 The front-end is about to issue 2 instructions
 The cycle after it will issue 3
 The cycle after it will issue only 1
 The cycle after it will issue 2
 There is complex hardware that decides what can be issued

instructions
flow
this way

Simplified Example Core

Front-end

Execution
Core

 At the current cycle, two functional units are used
 Next cycle one will be used
 And so on
 The white slots are “pipeline bubbles”: lost opportunity for doing useful work

 Due to low instruction-level parallelism in the program

instructions
flow
this way

Multiple Threads in Memory

RAM

Core

 Four threads in memory
 In a “traditional” architecture, only

the “red” thread is executing
 When the O/S context switches it

out, then another thread gets to
run

Multi-core system

RAM

Core Core

Waste of Hardware

 Both in the single-core and the dual-core systems there
are many white slots

 The fraction of white slots in the system is the fraction of
the hardware that is wasted
 Adding a core does not reduce wastage

 Challenge: use more of the white slots!

Super-threading
 The idea behind “super-threading” is to allow

instructions from multiple threads to be “in” the same
core simultaneously

Super-threading
 Super-threading is also called “time-sliced multithreading”
 The core is then called a multithreaded core
 Requires more hardware cleverness

 logic switches at each cycle
 Leads to less waste

 e.g., a thread can run during a cycle while another thread is
waiting for the memory

 Super-threading “just” provides a finer grain of interleaving
 But there is a restriction

 Each stage of the front end or the execution core only runs
instructions from ONE thread!

 Therefore, super-threading does not help with poor
instruction parallelism within one thread
 It does not reduce bubbles within a row

Hyper-threading
 The idea behind “hyper-threading” is to allow

instructions from multiple threads to execute
simultaneously on the same core

Hyper-threading
Requires even more hardware cleverness

logic switches within each cycle
 In the previous example we only showed two threads executing

simultaneously
Note that there were still white slots

 In fact, Intel’s most talked about hyper-threaded processor is only
for two threads

 Intel’s hyper-threading only adds 5% to the die area,
therefore the performance benefit is worth it

 Some people argue that “two” is not “hyper” 
Some “supercomputer” projects have built “massively

multithreaded processors” that have hardware support for
many more threads than 2

Hyper-threading provides the finest level of interleaving
From the OS perspective, there are two “logical” cores

Less performance than two physical cores
Less wastage than with two physical cores

My Linux Server (lstopo)
Two processors (one per “socket”)

 Total: 8 physical cores, each of them hyperthreaded
Looks like 16 physical cores to the OS

How Good is HyperThreading?
 Ideally, a hyperthreaded core would run two

threads as fast as one thread
 In practice, a single hyperthreaded core is not as

fast as two cores
 And it depends on what the threads are doing
 Let’s look at results on my laptop for a simple

OpenMP parallelization of

#pragma omp parallel for private(i,j,k)
for (i=0; i < N; i++)
 for (k=0; k < N; k++)
 for (j=0; j < N; j++)
 C[i][j] += A[i][k] * B[k][j]

How Good is Hyperthreading?

HyperThreading

 Hyperthreading is pure hardware and is
transparent to the OS (who just sees twice as
many cores)

 Its effectiveness really depends on what threads
do, and it’s hard to predict it

 The more different stuff threads do, the better it is
 Our matrix-multiply case was thus not great

 It is often disabled for HPC performance
measurements

 But it’s sufficiently worthwhile to be a standard
features in most CPUs

Conclusion

 As a developer, luckily, all these things are
transparent to you and you typically benefit from
them to some extent

 If you’re into HPC, then you need to know what’s
going on so that you write your code in a way
that will maximize core concurrency
 e.g., write loops that you know the compiler will

vectorize even though from your perspective they are
sequential!

 See a computer architecture course for full
details/explanations about the glory of our
modern cores

