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Concurrency within a Core
 So far, we’ve assumed that one thread executes 

sequentially on a core 
 And it’s fine  to think of it in this way while developing multi-

threaded code 
 But, under the cover, there is a lot of concurrency in 

the hardware 
 This is done by having many hardware components in 

the core that can work concurrently while executing 
the instruction stream of one or even two threads 

 In this set of lecture notes, we just review the major 
techniques (some extremely briefly) for your general 
culture/understanding



Major Techniques

 Concurrency between instructions of a single 
thread: Instruction-Level Parallelism (ILP) 
 Pipelining 
 Out-of-order Execution 
 Superscalar 
 Vector instructions 

 Concurrency between instructions of 
multiple threads: Hyperthreading 



ILP: Pipelining
 Having all instructions doable in the same number of stages of 

the same durations is the RISC idea 
 Example: MIPS architecture (See THE architecture book by 

Patterson and Hennessy) 
 5 stages 

 Instruction Fetch (IF) 
 Instruction Decode (ID) 
 Instruction Execute (EX) 
 Memory accesses (MEM) 
 Register Write Back (WB) 

 Each stage takes one clock cycle

IF ID EX MEM WB

IF ID EX MEM WB

LD R2, 12(R3)

DADD R3, R5, R6

Concurrent execution 
of two instructions



ILP: Pipelining
 Modern processors have deep pipelines 
 Example: Intel’s Saltwell architecture  

 The deeper the pipeline, the more opportunity for 
performance, but one has to avoid dreaded   “pipeline stalls” 
 e.g., due to data dependencies between instructions



ILP: Out-of-order Execution
 Modern cores swap instructions at runtime to expose 

more parallelism while preserving correctness 
 The hardware fetches multiple instructions at once, 

and decides (with an algorithm implemented in 
hardware!!) how to reorder them to achieve better 
performance 
 Typically, better use of the pipeline by dealing with data 

dependencies 
 This adds a lot of complexity to the hardware 

 And makes it even more difficult for us human  to figure 
out what our high-level, compiled code will actually be 
going 



ILP: Superscalar

 The term superscalar is used to  denote 
cores that can execute more than one 
instruction of a single thread at the same time 
(at least partially) 

 Extra hardware is added to the processor so 
that multiple instructions can be issued and 
executed during the same cycle 
 e.g., multiple ALUs 
 e.g., multiple pipelines



ILP: Vector  Units
 A functional unit that does element-wise operations on 

multiple values with a single “vector instruction” that 
operates on “vector registers” (data parallelism in hardware) 

#elts adds in parallel+

.  .  . .  .  . 

.  .  . 

#elts#elts

#elts

 All your compilers are now “vectorizing compilers” that will 
transform some of your loops into “vectorized loops”



Major Techniques

 Concurrency between instructions of a single 
thread: Instruction-Level Parallelism (ILP) 
 Pipelining 
 Out-of-order Execution 
 Superscalar 
 Vector instructions 

 Concurrency between instructions of 
multiple threads: Hyperthreading 



Multi-threading
 Multi-threading has been around for years, so 

what are we talking about here? 
 Here we’re talking about Hardware Support for 

threads, often called Simultaneous Multi-
Threading (SMT) 

 One can augment a core with additional hardware 
to support multiple threads at once, so that we no 
longer need to context-switch threads in and out! 

 e.g., that means multiple register files 
 The idea is that one can duplicate some of the 

hardware in the core (but not all, otherwise it’s not 
worth it) so that threads can happily co-exist



Front-end vs. Execution code
 Conceptually, CPUs split the fetch-decode-

execute cycle into two big phases 
 Front-end: fetching/decoding/reordering of 

instruction 
 Execution core: executing bits and pieces of 

instructions in parallel using multiple hardware 
components 

 e.g., adders, etc. 
 Both the front-end and the execution cores are 

pipelined, superscalar, out-of-order, etc.  
 Let’s look at the typical graphical depiction of a 

processor running instructions



Simplified Example Core

Front-end

Execution 
Core

 The front-end can issue four instructions to the execution 
core simultaneously 
 4-stage pipeline 

 The execution core has 8 functional units 
 each a 6-stage pipeline

instructions 
flow  
this way



Simplified Example Core

Front-end

Execution 
Core

 The front-end is about to issue 2 instructions 
 The cycle after  it will issue 3 
 The cycle after it will issue only 1 
 The cycle after it will issue 2 
 There is complex hardware that decides what can be issued 

instructions 
flow  
this way



Simplified Example Core

Front-end

Execution 
Core

 At the current cycle, two functional units are used 
 Next cycle one will be used 
 And so on 
 The white slots are “pipeline bubbles”: lost opportunity for doing useful work 

 Due to low instruction-level parallelism in the program

instructions 
flow  
this way



Multiple Threads in Memory

RAM

Core

 Four threads in memory 
 In a “traditional” architecture, only 

the “red” thread is executing 
 When the O/S context switches it  

out, then another thread gets to 
run



Multi-core system

RAM

Core Core



Waste of Hardware

 Both in the single-core and the dual-core systems there 
are many white slots 

 The fraction of white slots in the system is the fraction of 
the hardware that is wasted 
 Adding a core does not reduce wastage 

 Challenge: use more of the white slots!



Super-threading
 The idea behind “super-threading” is to allow 

instructions from multiple threads to be “in” the same 
core simultaneously



Super-threading
 Super-threading is also called “time-sliced multithreading” 
 The core is then called a multithreaded core 
 Requires more hardware cleverness 

 logic switches at each cycle 
 Leads to less waste 

 e.g., a thread can run during a cycle while another thread is 
waiting for the memory 

 Super-threading “just” provides a finer grain of interleaving 
 But there is a restriction 

 Each stage of the front end or the execution core only runs 
instructions from ONE thread! 

 Therefore, super-threading does not help with poor 
instruction parallelism within one thread 
 It does not reduce bubbles within a row



Hyper-threading
 The idea behind “hyper-threading” is to allow 

instructions from multiple threads to execute 
simultaneously on the same core



Hyper-threading
Requires even more hardware cleverness 

logic switches within each cycle 
 In the previous example we only showed two threads executing 

simultaneously 
Note that there were still white slots 

 In fact, Intel’s most talked about hyper-threaded processor is only 
for two threads 

 Intel’s hyper-threading only adds 5% to the die area, 
therefore the performance benefit is worth it  

 Some people argue that “two” is not “hyper”  
Some “supercomputer” projects have built “massively 

multithreaded processors” that have hardware support for 
many more threads than 2 

Hyper-threading provides the finest level of interleaving 
From the OS perspective, there are two “logical” cores 

Less performance than two physical cores 
Less wastage than with two physical cores



My Linux Server  (lstopo)
Two processors (one per “socket”)

 Total: 8 physical cores, each of them hyperthreaded 
Looks like 16 physical cores to the OS



How Good is HyperThreading?
 Ideally, a hyperthreaded core would run two 

threads as fast as one thread 
 In practice, a single hyperthreaded core is not as 

fast as two cores 
 And it depends on what the threads are doing 
 Let’s look at results on my laptop for a simple 

OpenMP parallelization of

#pragma omp parallel for private(i,j,k) 
for (i=0; i < N; i++) 
  for (k=0; k < N; k++) 
    for (j=0; j < N; j++) 
       C[i][j] += A[i][k] * B[k][j]



How Good is Hyperthreading?



HyperThreading

 Hyperthreading is pure hardware and is 
transparent to the OS (who just sees twice as 
many cores) 

 Its effectiveness really depends on what threads 
do, and it’s hard to predict it 

 The more different stuff threads do, the better it is 
 Our matrix-multiply case was thus not great 

 It is often disabled for HPC performance 
measurements 

 But it’s sufficiently worthwhile to be a standard 
features in most CPUs



Conclusion

 As a developer, luckily, all these things are 
transparent to you and you typically benefit from 
them to some extent 

 If you’re into HPC, then you need to know what’s 
going on so that you write your code in a way 
that will maximize core concurrency 
 e.g., write loops that you know the compiler will 

vectorize even though from your perspective they are 
sequential! 

 See a computer architecture course for full 
details/explanations about the glory of our 
modern cores


