
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Avoiding Locks

Locks are slow
 Using locks, for mutual exclusion, comes with

significant overhead
 Especially when using blocking locks!
 But even when using spin locks on short critical

sections
 Essentially, the more your program calls

“lock()”, the slower it is
 But locks are fundamental for ensuring mutual

exclusion, so don’t we just need them?
 Many smart people have tried to use lock() less,

or not at all!

Cater to the Common Case
 Locks are used to ensure mutual exclusion, and critical

sections are often short
 Unless you have a lot of threads that contend with the

critical section, a thread will typically get the lock right
away

 The common case: everything goes well
 The rare case: there is contention for the critical

section and threads can’t enter the critical section
 Then it seems very wasteful to pay the overhead of

calling lock() / unlock() every time when in fact things
are going to be fine with high probability

 Especially if locks are blocking instead of spin!
 Let’s look at a trivial example...

A Concurrent Array
 Your abstract data type is an array of size N
 You provide one method: increment(i)

 Increments the i-th element
 Here is one implementation:

public class ConcurrentArray {
public int values[N];

public synchronized void increment(int i) {
values[i]++;

}
}

 Why is this not good?

A Concurrent Array
 Your abstract data type is an array of size N
 You provide one method: increment(i)

 Increments the i-th element
 Here is one implementation:

public class ConcurrentArray {
public int values[N];

public synchronized void increment(int i) {
values[i]++;

}
}

 Why is this not good? Not enough concurrency!

Another Implementation

public class ConcurrentArray {
public int values[N];
private Lock locks[N];

public void increment(int i) {
locks[i].lock();
values[i]++;
locks[i].unlock();

}
}

 Why is this not good?

Another Implementation

public class ConcurrentArray {
public int values[N];
private Lock locks[N];

public void increment(int i) {
locks[i].lock();
values[i]++;
locks[i].unlock();

}
}

 Why is this not good? Too much memory usage!

Forget Locks!
 Each implementation before corresponds to an

extreme:
 One lock, no concurrency, low memory footprint
 N locks, full concurrency, high memory footprint

 We could pick any option in between
 e.g., locks[i/5].lock();

 We’ve talked about this conundrum before
 But regardless, if you have fewer threads than N,

and if threads access the array all over, the
probability that you needed locks in the first place
is very, very low

 Let’s try to not use locks at all...

The Basic Idea
 Compute array[i] + 1
 Atomically:

 If in the meantime nobody has changed the value, then write
the incremented value to memory

 Otherwise, re-attempt: “Oops, somebody else updated the
array in the meantime, let’s forget everything I did and I am
doing it again from scratch”

 The idea is very similar to that of transactional memory
(see next set of lecture notes)

 But we implement it by hand without requiring our hardware
to do anything new

 The only thing the hardware must provide: the same
atomic instruction that’s used to implement locks

 And all CPUs have that

Compare-And-Swap (CAS)

boolean compare_and_swap(type *var,
 type oldval,
 type newval)

{
 if (*var == oldval) {
 *var = newval;
 return true;
 } else {
 return false;
 }
}

Pse
ud

o-c
od

e o
f th

e

ato
mic

CAS in
str

uc
tio

n

CAS in Languages
 Java: provided, e.g., for Integers, as part of the

AtomicInteger class

AtomicInteger foo = new AtomicInteger(42);
boolean success =
 foo.CompareAndSet(expected, new);

 C/C++: Provided as part of many libraries (e.g., Boost)
 For instance, the __sync_val_compare_and_swap()

built-in function in gcc

Lock-Free Concurrent Array

 Record the value I see now
 Record the value I want to write
 Atomically: if the old value is still there, then write my new

value and be done, otherwise re-attempt

public class ConcurrentArray {
public int values[N];

public void increment(int i) {
int old_value, new_value;
do {

old_value = values[i];
new_value = old_value + 1;

} while (!CAS(&(values[i]), old_value, new_value);
}

Forgive the ugly

Java/C hybrid

pseudo-code

Lock-Free Concurrent Array

 Chances are CAS is going to succeed most of the time,
unless there are tons of competing threads

 But if we have tons of competing threads, perhaps we
should design our application differently anyway!

public class ConcurrentArray {
public int values[N];

public void increment(int i) {
int old_value, new_value;
do {

old_value = values[i];
new_value = old_value + 1;

} while (!CAS(&(values[i]), old_value, new_value);
}

Lockfree Data Structures

 We can use the same approach for all kinds
of data structures

 We then call them “Lockfree data structures”
 Used to be an active research area, and many

research papers have given use efficiency lock
free data structures

 Let’s look at one of the simplest: a lockfree,
thread-safe Stack….

A Lock-free Stack in C

void push(int t) {
 Node* node = new_node(t);
 do {

 node->next = head;
} while (!CAS(&head, node->next, node));

}

A Lock-free Stack in C

bool pop(int *t) {
 Node* current = head;
 while (current) {
 Node *next = current->next;

 if(CAS(&head, current, next)) {
 *t = current->data;

free(current);
 return true;
 }
 current = head;
 }
 return false;
}

A Lock-free Stack in C
void push(int t) {
 Node* node = new_node(t);
 do {
 	 node->next = head;
 } while (!CAS(&head, node->next, node));
}

Thread #1: push()
node = 0xAAAA
node->next = 0xAA63

head = 0xAA63

null

context
switch

A Lock-free Stack in C
void push(int t) {
 Node* node = new_node(t);
 do {
 	 node->next = head;
 } while (!CAS(&head, node->next, node));
}

Thread #1: push()
node = 0xAAAA
node->next = 0xAA63

head = 0xAA63

null

Thread #2: push()
node = 0xFFFF
node->next = 0xAA63
// CAS
	 head == 0xAA63: true

head = 0xFFFF
return true

exit while loop
return

A Lock-free Stack in C
void push(int t) {
 Node* node = new_node(t);
 do {
 	 node->next = head;
 } while (!CAS(&head, node->next, node));
}

Thread #1: push()
node = 0xAAAA
node->next = 0xAA63

head = 0xAA63

null

Thread #2: push()
node = 0xFFFF
node->next = 0xAA63
// CAS
	 head == 0xAA63: true

head = 0xFFFF
return true

exit while loop
return

 // CAS
	 head != 0xAA63

 return false
 node->next = 0xFFFF
 // CAS

	 head == 0xFFFF
 return true

 exit while loop
 return

The ABA Problem

 There is a subtle problem with the code
before, due to an (unlikely but possible)
execution

 The behavior is due to the memory manager,
i.e., the thing that does malloc/new and free/
garbage collect

 Let’s see this on an example
 Yet another example of why concurrency is hard

and why you need to know low-level stuff (in this
case, OS stuff)

 Remember the “What if the constructor is inlined?”
DCL problem (in that case, compiler stuff)

ABA Problem Example
head = 0xAAAA

null

0xBBBB

ABA Problem Example

Thread #1:
pop():

sees that head = 0xAAAA
set next to head->next = 0xBBBB
interrupted before the CAS

head = 0xAAAA

null

0xBBBB

ABA Problem Example

Thread #1:
pop():

sees that head = 0xAAAA
set next to head->next = 0xBBBB
interrupted before the CAS

Thread #2:
pop(): removes 0xAAAA
free(0xAAAA)

head = 0xBBBB

null

ABA Problem Example

Thread #1:
pop():

sees that head = 0xAAAA
set next to head->next = 0xBBBB
interrupted before the CAS

Thread #2:
pop(): removes 0xAAAA
free(0xAAAA)
 pop(): removes 0xBBBB
 free(0xBBBB)

null

ABA Problem Example

Thread #1:
pop():

sees that head = 0xAAAA
set next to head->next = 0xBBBB
interrupted before the CAS

Thread #2:
pop(): removes 0xAAAA
free(0xAAAA)
 pop(): removes 0xBBBB
 free(0xBBBB)
 push():

new_node() returns 0xAAAA!!!
head = 0xAAAA

head = 0xAAAA

null

Address recycling by
the memory allocator

ABA Problem Example

Thread #1:
pop():

sees that head = 0xAAAA
set next to head->next = 0xBBBB
interrupted before the CAS

Thread #2:
pop(): removes 0xAAAA
free(0xAAAA)
 pop(): removes 0xBBBB
 free(0xBBBB)
 push():

new_node() returns 0xAAAA!!!
head = 0xAAAA

head = 0xAAAA

null

CAS sees that head = 0xAAAA, so it
hasn’t changed, and therefore sets
head to next=0xBBBB
But 0xBBBB has been freed!

Does Address Recycling Happen?

 Easy to check
 Let’s just run:

#include <stdlib.h>
#include <stdio.h>
int main() {
 char *x = (char *)malloc(100);
 free(x);
 char *y = (char *)malloc(100);
 printf("Address recycling: %s\n",
 (x == y ? "yes" : "no"));
}

Solving the ABA Problem
 The ABA Problem is a well-known problem when

implementing lock free data structures
 One solution: Doubleword CAS

 Don’t simply use a pointer
 Use a 128-bit data structure that has a pointer and a

counter
 Each time we use the pointer, we increment the counter
 Each time we allocated memory for a new “object” we

set the counter to 0 in the data structure
 We always CAS the whole data structure

 Modern architectures provide a 128-bit CAS, so we can CAS
the whole 128-bit data structure

 This way, CAS will fail if the counter value has changed

Take-away
 There is a lot of complexity there, but the rewards can

be huge
 Lockfree data structures is partly why java.util.concurrent

implementations are radically better than what you could do
using just synchronized

 java.util.concurrent, Boost, etc. are full of CAS instructions
 There are many references on this topic
 A good introduction article is:

 Concurrent programming without locks , K. Fraser and T.
Harris, ACM Transactions on Computer Systems, Vol. 25 (2), May
2007 (yes, it’s old)

 http://www.cl.cam.ac.uk/research/srg/netos/papers/2007-cpwl.pdf
Let’s now look at the “The Silently Shifting Semicolon”

reading in this module

http://www.cl.cam.ac.uk/research/srg/netos/papers/2007-cpwl.pdf

