
Henri Casanova (henric@hawaii.edu)

ICS432 
Concurrent and High-Performance  

Programming

Transaction 
Memory



Future of Mutual Exclusion
! The content of these lecture notes is inspired by  

" Unlocking Concurrency, by Adl-Tabatabai, Kozyrakis, Saha 
" “The Art of multiprocessor Programming”, Maurice Herlihy 

and Nir Shavit 
! The short story: 

" Concurrent programming has become part of everyday life 
due to multi-core architectures 

" Mutual exclusion is one of the fundamental requirements 
for concurrency 

" Mutual exclusion is not easy to program so that it’s correct, 
low-cost, and high-concurrency 

! You should be pretty convinced by now in this course 
" Ideally, the programmer should not have to worry about it 

and the system underneath should deal with it 
" Transactions are a way to achieve this goal, to some extent

http://queue.acm.org/detail.cfm?id=1189288


Mutual Exclusion Hell
! The basic approach is to do mutual exclusion with 

locks, and it’s difficult to make programs correct (or 
easy to debug) and fast 

" Lockfree programming solves performance issues, but if 
anything requires even more sophisticated/difficult thinking 

! Quote from the founder of Epic Games: “manual 
synchronization .. is hopelessly intractable” (for dealing 
with concurrency in game-play simulation) 

! Quote from Herb Sutter, chair of the ISO C++ 
standards committee: “Everybody who learns 
concurrency thinks they understand it, ends up finding 
mysterious races they thought weren’t possible, and 
discovers that they didn’t actually understand it yet 
after all.” 

! Let’s revisit locking a little bit…



Locking in Real Life
! One “easy” approach is to use coarse-grained 

locking: just protect your entire code using one lock 
" e.g., you have a tree structure that is traversed and 

updated by multiple threads 
" Lock the whole “traverse and update” operation 
" While a thread traverses the tree, no other thread can 

! This is the easy solution, but it has poor 
performance 

" One long critical section 
! We say that it “doesn’t scale” 

" Adding threads/cores won’t lead to performance 
improvements



Locking in Real Life
! The alternative is fine-grained locking: use 

multiple locks to create multiple shorter 
critical sections 
" More difficult to develop, debug, validate 
" Real-world Linux Kernel code comment 
" /*  
 * When a locked buffer is visible to the I/O layer 
 * BH_Launder is set. This means before unlocking 
 * we must clear BH_Launder,mb() on alpha and then 
 * clear BH_Lock, so no reader can see BH_Launder set 
 * on an unlocked buffer and then risk to deadlock.  
 */ 
" When understanding comments becomes more 

difficult than understanding the code?



Locking in Real Life

! Consider a doubly-linked, two-ended queue

! Is efficient fine-grain locking feasible? 
! Yes, but it is a publishable research result [Michael & 

Scott, PODC96] 
! Question: are we happy with a technology with which 

writing a concurrent double-ended queue is actually a 
research problem???? 

! Waiting for java.util.concurrent to provide these cool 
solutions is not always possible



Locking in Real Life
! Locks are not “composable” 
! Remember Homework Assignment #3: Two thread-safe 

hash tables, T1 and T2, each protected by its own lock 
! We want to move an element, e, from T1 to T2, so that e 

must always be seen as either in T1 or T2 
" Therefore, T1.remove(e) followed by T2.add(e) doesn’t work 

because any thread could access T1 or T2 in between the two 
calls and not see e anywhere! 

! Solution: acquire T2’s lock before calling T1.remove() 
" But T2’s lock is supposed to be hidden to developers! 
" This is “breaking the abstraction” and users need either to use 

their own locks or “see” inside the abstract data type 
! There is really no great solution here 
! Again, shouldn’t this be easy using a “good” technology?



So what?
! Perhaps we’re just doing the wrong thing? 
! Could there be a solution that doesn’t require the 

programmer to spend countless hours solving 
concurrency problem 
" Intellectually challenging and rewarding 
" But not very productive 

! One option is: just do not share any memory 
state ever (sort of the Erlang philosophy) 
" Share nothing, communicate via messages, and get 

over it 
" But reasoning about messages can be difficult too 

! Another option: Transactions



What is a Transaction?
! The transaction concept comes from databases 
! A transaction is a sequence of (memory) operations that 

either executes completely (it’s committed) or has no 
effect on the state of the system (it’s aborted) 

! If a transaction commits, it appears as if all its operations 
happened instantaneously, that is, atomically 
" The stores/writes are not visible until a transaction commits, 

also a transactions may have multiple such stores/writes 
" Therefore, there are no conflicts with other transactions 

! Can we build a transaction abstraction with these 
properties? 
" The programmer reasons assuming transactions, and the 

system makes it happen 
" Just like many other things in a computer system



Transactions in Languages
! If we had a system that support transactions, we 

could stop using locks and just declare sections 
of code as atomic

public class SomeClass { 
  Object lock1, lock2; 

  public SomeClass() { 
    lock1 = new Object(); 
    lock2 = new Object(); 
  } 

  public void f1() { 
    synchronized(lock1) { . . . } 
  } 
  public void f2() { 
    synchronized(lock2) { . . . } 
  } 
}

public class SomeClass { 
   
  public SomeClass() { 
  } 

  public void f1() { 
    atomic { . . .} 
  } 
  public void f2() { 
    atomic { . . . } 
  } 
}



Why Transaction Languages?

! The programmer has to make a choices with 
locks:  
" Coarse-grain or fine-grain? 
" How fine is fine-grain? 

! By just declaring sections as “atomic”, the 
system does the hard work, not the 
programmer 
" A transaction may fail, in which case the user 

can simply attempt it again 

! And the code is simpler to write!



Array Example

! Assume you have an array of integers, 
and that multiple threads want to read / 
write elements 

! Solution #1: one lock for the whole array 
" poor concurrency 

! Solution #2: one lock for each element 
" memory consumption, complexity 

! Solution #3: use transactions and put all 
array reads or writes in atomic sections



HashMap
! A good example / justification for the previous slide is the 

ConcurrentHashMap class in java.util.concurrent 
! The reason for this class in the package is that it’s difficult to 

write a good thread-safe hash table that 
" Has many locks to allow for maximum concurrency 
" Doesn’t have so many locks that overhead is large 
" Is correct in spite of the many locks (no deadlock) 

! Several expert programmers have gotten together to 
implement the thread-safe ConcurrentHashMap class 

" Which uses CAS for lockfree programming under the hood! 
! If we had something like transactions, anybody could easily 

write a thread-safe hash map (or any other data structure), 
just by annotating the sequential code with atomic sections 

" The benefits of fine-grain concurrency without the headaches 



Composability
! Let’s go back to the “move one element from one 

hash table to another” example from Homework 
#3 

! This can actually be done by fiddling with the 
actual implementation of ConcurrentHashMap to 
preserve concurrency 
" Really difficult to do correctly 
" And you don’t have access to that code typically! 

! Solution: put the move in an “atomic” section, let 
the system deal with it 

! With transactions, you can now get a bunch of 
objects, do things on them in an atomic section, 
and still have maximum concurrency!



Transactions are Great but...
! At this point, anybody would agree that transactions are 

good 
! But we’ve been assuming that the system underneath can 

implement them... is this even possible? 
! Database people has been using transactions for a while 

" To maintain consistency to databases (e.g., airline 
reservations) 

! The way in which it works is (at a high level): 
" Versioning: keep multiple concurrent versions of the “state” of 

the system for multiple concurrent transactions 
" Conflict resolution: when a transaction tries to commit, check 

whether it can be done safely, otherwise abort the transaction 
" Rollback: when a transaction cannot commit, restore the old 

version of the state to negate the changes



Conflict Resolution
! Conflict resolution is done by looking at the “read set” 

and “write set” of transactions 
" The set of “things” read 
" The set of “things” written 

! When resolving conflicts, a TM system just looks at 
intersections 

" e.g., if two transactions have intersecting write sets, then one 
of them is going to be rolled back 

! One question: what is the granularity? 
" sets of objects: similar to coarse-locking 

! If two transactions modify the same object, only one goes 
through 

" sets of bytes: great, but costly (many bytes) 
" sets of cache blocks: probably a good compromise



Data Versioning
! Goal: be able to remember old versions of data in 

case of a rollback 
! Two options: 

" Eager  (keep an “undo log”) 
! Update memory location directly
! Maintain undo info in a log
! Good: Fast commit
! Bad: Slow aborts

" Lazy (keep a “write buffer”) 
! Buffer writes until commit
! Update memory location on commit 
! Good: Fast aborts 
! Bad: Slow commits



Eager Versioning

Undo 
Log

Undo 
Log

Undo 
Log

Undo 
Log

X: 10 Memory X: 15 Memory

X: 10 MemoryX: 15 Memory

Initial State Write 15 to X

Thread Thread

X: 10

Commit

Thread

X: 10

Thread

Abort

X: 10



Lazy Versioning

Write 
Buffer

Write 
Buffer

Write 
Buffer

Write 
Buffer

X: 10 Memory X: 10 Memory

X: 10 MemoryX: 15 Memory

Initial State Write 15 to X

Thread Thread

X: 15

Commit

Thread

X: 15

Thread

Abort

X: 15



Implementation
! Can be implemented in hardware (Hardware 

Transactional Memory: HTM) 
" Exploits “cache coherence protocols” 

! Turns out that caches in SMP systems do a lot of what’s 
needed for implementing HTM 

" Fast, but needs hardware resources 
! Can be implemented in software (Software 

Transaction Memory: STM) 
" Slow but can substitute for HTM when it fails 

! Studies have shown that transactions are 
easier to program than traditional locks 
" No surprise there



Is it Coming, is it Good?
! HTM proposed initially in 1993 
! Many groups in industry, including Intel, have looked at the 

hardware and software side of transaction memory 
" Several STM implementations 
" HTM: IBM’s BlueGene/Q processor, IBM’s EC12 server, IBM’s 

Power 8 processor, Intel’s TSX on Haswell and Broadwell 
processors (but didn’t work!) and then on some Skylake 
processors 

! One of those “permanently new” hot technological trends 
" Perhaps it’s getting there though… 

! Doesn’t solve everything 
" Still need to find and expose concurrency 
" Still need to understand what should be in a critical section 
" If many transactions keep aborting, performance is terrible 

! Some people think it would lead to a generation of terrible 
programmers...



Conclusion

! As programmers in the industry you may see 
the day when you rely on transactional 
memory systems routinely 

! But don’t get too excited (yet)


