Transaction

Memory

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)



" A
Future of Mutual Exclusion

® The content of these lecture notes is inspired by
Unlocking Concurrency, by Adl-Tabatabai, Kozyrakis, Saha

“The Art of multiprocessor Programming”, Maurice Herliny
and Nir Shavit

® The short story:

Concurrent programming has become part of everyday life
due to multi-core architectures

Mutual exclusion is one of the fundamental requirements
for concurrency

Mutual exclusion is not easy to program so that it's correct,
low-cost, and high-concurrency

= You should be pretty convinced by now in this course

|deally, the programmer should not have to worry about it
and the system underneath should deal with it

Transactions are a way to achieve this goal, to some extent



http://queue.acm.org/detail.cfm?id=1189288

" A
Mutual Exclusion Hell

® The basic approach is to do mutual exclusion with
locks, and it’s difficult to make programs correct (or
easy to debug) and fast

Lockfree programming solves performance issues, but if
anything requires even more sophisticated/difficult thinking

® Quote from the founder of Epic Games: “manual
synchronization .. is hopelessly intractable” (for dealing
with concurrency in game-play simulation)

® Quote from Herb Sutter, chair of the ISO C++
standards committee: “Everybody who learns
concurrency thinks they understand it, ends up finding
mysterious races they thought weren’t possible, and
discovers that they didn’t actually understand it yet
after all.”

m | et’s revisit locking a little bit...



"
Locking in Real Life

® One “easy” approach is to use coarse-grained
locking: just protect your entire code using one lock

e.g., you have a tree structure that is traversed and
updated by multiple threads

Lock the whole “traverse and update” operation
While a thread traverses the tree, no other thread can
B This is the easy solution, but it has poor
performance
One long critical section
® \We say that it “"doesn’t scale”

Adding threads/cores won’t lead to performance
Improvements



" J
Locking in Real Life

B The alternative is fine-grained locking: use
multiple locks to create multiple shorter
critical sections

More difficult to develop, debug, validate

Real-world Linux Kernel code comment
/*

When a locked buffer is visible to the I/O layer
BH Launder is set. This means before unlocking
we must clear BH Launder,mb() on alpha and then

clear BH Lock, so no reader can see BH Launder set
on an unlocked buffer and then risk to deadlock.

* % ok ¥ ok

*/
When understanding comments becomes more
difficult than understanding the code?



" J
Locking in Real Life

m Consider a doubly-linked, two-ended queue

LR ol s e g1}

m |s efficient fine-grain locking feasible?

® Yes, but it is a publishable research result [Michael &
Scott, PODC96]

m Question: are we happy with a technology with which
writing a concurrent double-ended queue is actually a
research problem?7???

m \Waiting for java.util.concurrent to provide these cool
solutions is not always possible




" J
Locking in Real Life

® | ocks are not “composable”

B Remember Homework Assignment #3: Two thread-safe
hash tables, T1 and T2, each protected by its own lock

® \We want to move an element, e, from T1 to T2, so that e
must always be seen as eitherin T1 or T2

Therefore, T1.remove(e) followed by T2.add(e) doesn’t work
because any thread could access T1 or T2 in between the two
calls and not see e anywhere!

m Solution: acquire T2's lock before calling T1.remove()
But T2’s lock is supposed to be hidden to developers!

This is “breaking the abstraction” and users need either to use
their own locks or “see” inside the abstract data type

® There is really no great solution here
® Again, shouldn’t this be easy using a “good” technology?



" A
So what?

m Perhaps we're just doing the wrong thing?

® Could there be a solution that doesn’t require the
programmer to spend countless hours solving
concurrency problem
Intellectually challenging and rewarding
But not very productive

® One option is: just do not share any memory
state ever (sort of the Erlang philosophy)

Share nothing, communicate via messages, and get
over it

But reasoning about messages can be difficult too
® Another option: Transactions



" A
What is a Transaction?

® The transaction concept comes from databases

® A transaction is a sequence of (memory) operations that
either executes completely (it's committed) or has no
effect on the state of the system (it's aborted)

® |f a transaction commits, it appears as if all its operations
happened instantaneously, that is, atomically

The stores/writes are not visible until a transaction commits,
also a transactions may have multiple such stores/writes

Therefore, there are no conflicts with other transactions

® Can we build a transaction abstraction with these
properties?

The programmer reasons assuming transactions, and the
system makes it happen

Just like many other things in a computer system



"
Transactions in Languages

® |[f we had a system that support transactions, we
could stop using locks and just declare sections
of code as atomic

public class SomeClass {

Object lock1, lock2; public class SomeClass {

public SomeClass() { public SomeClass() {
lock1 = new Object(); }
lock2 = new Object();

} public void f1() {

atomic{.. .}

public void f1() { }
synchronized(lock1) { ...} public void f2() {

} atomic{ ...}

public void f2() { }
synchronized(lock2) { . . . } }

}
}



" J
Why Transaction Languages?

® The programmer has to make a choices with
locks:

Coarse-grain or fine-grain?
How fine is fine-grain?

m By just declaring sections as “atomic”, the
system does the hard work, not the
programmer

A transaction may fail, in which case the user
can simply attempt it again

® And the code is simpler to write!



"
Array Example

® Assume you have an array of integers,
and that multiple threads want to read /
write elements

® Solution #1: one lock for the whole array

pPOOr concurrency
® Solution #2: one lock for each element
memory consumption, complexity

® Solution #3: use transactions and put all
array reads or writes in atomic sections



" J
HashMap

m A good example / justification for the previous slide is the
ConcurrentHashMap class in java.util.concurrent

® The reason for this class in the package is that it’s difficult to
write a good thread-safe hash table that

Has many locks to allow for maximum concurrency
Doesn’t have so many locks that overhead is large
Is correct in spite of the many locks (no deadlock)

m Several expert programmers have gotten together to
implement the thread-safe ConcurrentHashMap class

Which uses CAS for lockfree programming under the hood!

® [f we had something like transactions, anybody could easily
write a thread-safe hash map (or any other data structure),
just by annotating the sequential code with atomic sections

The benefits of fine-grain concurrency without the headaches



"
Composability

m | et’'s go back to the “move one element from one
hash table to another” example from Homework
#3

® This can actually be done by fiddling with the
actual implementation of ConcurrentHashMap to
preserve concurrency

Really difficult to do correctly
And you don’t have access to that code typically!

® Solution: put the move in an “atomic” section, let
the system deal with it

® \With transactions, you can now get a bunch of
objects, do things on them in an atomic section,
and still have maximum concurrency!



" A
Transactions are Great but...

m At this point, anybody would agree that transactions are
good

® But we've been assuming that the system underneath can
implement them... is this even possible?
m Database people has been using transactions for a while

To maintain consistency to databases (e.g., airline
reservations)

® The way in which it works is (at a high level):

Versioning: keep multiple concurrent versions of the “state” of
the system for multiple concurrent transactions

Conflict resolution: when a transaction tries to commit, check
whether it can be done safely, otherwise abort the transaction

Rollback: when a transaction cannot commit, restore the old
version of the state to negate the changes



" A
Conflict Resolution

m Conflict resolution is done by looking at the “read set”
and “write set” of transactions

The set of “things” read
The set of “things” written

® \When resolving conflicts, a TM system just looks at
Intersections

e.g., if two transactions have intersecting write sets, then one
of them is going to be rolled back
® One question: what is the granularity?

sets of objects: similar to coarse-locking

= |f two transactions modify the same object, only one goes
through

sets of bytes: great, but costly (many bytes)
sets of cache blocks: probably a good compromise



"
Data Versioning

B Goal: be able to remember old versions of data in
case of a rollback

®m Two options:

Eager (keep an “undo log”)
= Update memory location directly
= Maintain undo info in a log
= Good: Fast commit
= Bad: Slow aborts
Lazy (keep a “write buffer”)
= Buffer writes until commit

= Update memory location on commit
m Good: Fast aborts
= Bad: Slow commits



Eager Versioning

Initial State Write 15 to X
Thread Thread )
Undo Undo
Log X: 10 Log
X: 10 Memory X: 15 Memory
Commit Abort
Thread Thread
Undo Undo
>< Log >< Log
X: 15 Memory X: 10 Memory




Lazy Versioning

Initial State Write 15 to X
Thread Thread )
Write Write
Buffer X: 15 Buffer
X: 10 Memory X: 10 Memory
Commit Abort
Thread Thread
Write Write
‘ >< Buffer >< Buffer
X: 15 Memory X:10 Memory




" J
Implementation

® Can be implemented in hardware (Hardware
Transactional Memory: HTM)

Exploits “cache coherence protocols”

= Turns out that caches in SMP systems do a lot of what'’s
needed for implementing HTM

Fast, but needs hardware resources

® Can be implemented in software (Software
Transaction Memory: STM)
Slow but can substitute for HTM when it fails
B Studies have shown that transactions are
easier to program than traditional locks
No surprise there



"
Is it Coming, is it Good?

® HTM proposed initially in 1993

® Many groups in industry, including Intel, have looked at the
hardware and software side of transaction memory

Several STM implementations

HTM: IBM’s BlueGene/Q processor, IBM’'s EC12 server, IBM’s
Power 8 processor, Intel's TSX on Haswell and Broadwell
processors (but didn’t work!) and then on some Skylake
processors

® One of those “permanently new” hot technological trends
Perhaps it's getting there though...

m Doesn’t solve everything
Still need to find and expose concurrency
Still need to understand what should be in a critical section
If many transactions keep aborting, performance is terrible

®m Some people think it would lead to a generation of terrible
programmers...



" JE
Conclusion
®m As programmers in the industry you may see

the day when you rely on transactional
memory systems routinely

m But don’t get too excited (yet)



