
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Sequential Program
Optimization

Program Optimization
 You have a program that you need to make

faster
 i.e., as close to the computer’s peak performance

as possible
 You can pick better algorithms / data structures
 This is expected of a CS graduate based on

what was learned in courses like 211 / 311
 e.g., Don’t do a linear search in a sorted array
 e.g., Use a heap instead of a list when it make

sense
 And then you get into the “dark art” :)

Optimizing and Implementation
 Do not change the spirit of the algorithm or

the data structures
 Because you’re using good ones

 But instead modify the details of how the
code is written
 Shuffle lines of code around
 Tweak data structure implementations
 Use bitwise operations
 Make sure you don’t place too many system calls

(e.g., memory allocation)

By-hand Optimization
 Your profiler told you that most of the time

is spent in some part of the code
 You focus on this part of the code, and

start tweaking it
 In ICS312 I go through a small piece of code

that we try to hand-optimize in class
 Let’s look at well-known code-optimization

techniques and see why they would
accelerate code
 And let’s see which ones a compiler is able to

do…

By-hand Code Optimization

for (i=0; i < n; i++) {
 x += i * (n * 3);
}

int tmp = n*3;
for (i=0; i < n; i++) {
 x += i * tmp;
}

 Move code outside of loop when possible

for (i=0; i < f(n); i++) {
 x += i;
}

int tmp = f(n);
for (i=0; i < tmp; i++) {
 x += i;
}

Only valid if f() has no side-effects

By-hand Code Optimization

for (i=0; i < n; i++) {
 x += i * (n * 3);
}

int tmp = n*3;
for (i=0; i < n; i++) {
 x += i * tmp;
}

 Move code outside of loop when possible

for (i=0; i < f(n); i++) {
 x += i;
}

int tmp = f(n);
for (i=0; i < tmp; i++) {
 x += i;
}

Only valid if f() has no side-effects

Compilers
can do this

Compilers might not do this! (unless you
enable costly inter-procedural analysis)

By-hand Code Optimization

for (i=0; i < n; i++) {
 A[i] = 1;
}

int *A_ptr = &(A[0]);
for (i=0; i < n; i++) {
 *A_ptr = 1;
 A_ptr++;
}

 Avoid using arrays

 When you write A[i] in high level code, this is really an
address computation: &(A[0]) + i * sizeof(element)

 So it’s one addition and one multiplication (or a shift)
 Maintaining a pointer as in the code to the right is only one

addition

int *A_ptr = &(A[0]);
for (i=0; i < n; i++) {
 *A_ptr = 1;
 A_ptr++;
}

By-hand Code Optimization

for (i=0; i < n; i++) {
 A[i] = 1;
}

 Avoid using arrays

 When you write A[i] in high level code, this is really an
address computation: &(A[0]) + i * sizeof(element)

 So it’s one addition and one multiplication (or a shift)
 Maintaining a pointer as in the code to the right is only one

addition

Compilers
can do this

By-hand Code Optimization
 Loop Unrolling

for (i=0; i < 21; i++) {
 A[i] = 1;
}

for (i=0; i < 20; i+=2) {
 A[i] = 1; A[i+1] = 1;
}
A[20] = 1;

 Above we unroll by a “factor” 2
 But we have 21 iterations
 So there is “left over” work to do after the loop

By-hand Code Optimization
 Loop Unrolling

 The code on the right does half the number of comparisons
to the loop bound!

 Unrolling the full loop would in principle be faster! (no
comparisons!)

 But then there are instruction cache issues
 There would be cache misses when fetching instructions,

which may negate the benefit of loop unrolling

for (i=0; i < 21; i++) {
 A[i] = 1;
}

for (i=0; i < 20; i+=2) {
 A[i] = 1; A[i+1] = 1;
}
A[20] = 1;

By-hand Code Optimization
 Loop Unrolling

for (i=0; i < 21; i++) {
 A[i] = 1;
}

for (i=0; i < 20; i+=2) {
 A[i] = 1; A[i+1] = 1;
}
A[20] = 1;

Compilers
can do this

 The code on the right does half the number of comparisons
to the loop bound!

 Unrolling the full loop would in principle be faster! (no
comparisons!)

 But then there are instruction cache issues
 There would be cache misses when fetching instructions,

which may negate the benefit of loop unrolling

By-hand Code Optimization
 Function inlining

 The code on the right does not have any
function call
 See ICS312 to understand how expensive

function calls are

int f(int x) {
return x + 2;
}
. . .
for (i=0; i < 20; i++) {
 A[i] = f(i);
}

for (i=0; i < 20; i+=2) {
 A[i] = i + 2
}

By-hand Code Optimization
 Function inlining

 The code on the right does not have any
function call
 See ICS312 to understand how expensive

function calls are

int f(int x) {
return x + 2;
}
. . .
for (i=0; i < 20; i++) {
 A[i] = f(i);
}

for (i=0; i < 20; i+=2) {
 A[i] = i + 2
}

Compilers
can do this

Optimization Technique Galore
 There are dozens of known optimization

techniques
 The ones we saw are relatively simple
 Some are even simpler

 e.g., strength reduction
 e.g., don’t do “i * 2” but do “ i << 1”
 e.g., don’t do “x = a / 4.0” but do “x = a * 0.25”

 Some are really complicated, for instance,
instruction scheduling…
 Something all compilers do at the assembly

level, but that used to be done in high-level code

Instruction Scheduling
 Modern computers have multiple functional units

that could be used in parallel
 But only if instructions are in a good order

 Instruction scheduling:
 Think of your program as a set of n assembly

instructions
 Consider all possible permutations of the

instructions: fact(n) permutations
 Among these permutations some number lead to a

correct program outcome
 Among these correct permutations one is fast

because it uses all functional units to the max
 Instruction scheduling is the problem of finding which

permutation that is!

Conclusion
 A lot can be done to make code faster
 Compilers do sophisticated optimizations

(decades of research and development)
 The days of transforming your code into an

unreadable mess to make it fast are over!
 And have been for a while

 But there are few things that compilers
can’t / won’t do (yet), or at least not in all
cases and for any code

 A difficult such thing we look at in the next
set of lecture notes is data locality…

