
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Sequential Program
Optimization

Program Optimization
 You have a program that you need to make

faster
 i.e., as close to the computer’s peak performance

as possible
 You can pick better algorithms / data structures
 This is expected of a CS graduate based on

what was learned in courses like 211 / 311
 e.g., Don’t do a linear search in a sorted array
 e.g., Use a heap instead of a list when it make

sense
 And then you get into the “dark art” :)

Optimizing and Implementation
 Do not change the spirit of the algorithm or

the data structures
 Because you’re using good ones

 But instead modify the details of how the
code is written
 Shuffle lines of code around
 Tweak data structure implementations
 Use bitwise operations
 Make sure you don’t place too many system calls

(e.g., memory allocation)

By-hand Optimization
 Your profiler told you that most of the time

is spent in some part of the code
 You focus on this part of the code, and

start tweaking it
 In ICS312 I go through a small piece of code

that we try to hand-optimize in class
 Let’s look at well-known code-optimization

techniques and see why they would
accelerate code
 And let’s see which ones a compiler is able to

do…

By-hand Code Optimization

for (i=0; i < n; i++) {
 x += i * (n * 3);
}

int tmp = n*3;
for (i=0; i < n; i++) {
 x += i * tmp;
}

 Move code outside of loop when possible

for (i=0; i < f(n); i++) {
 x += i;
}

int tmp = f(n);
for (i=0; i < tmp; i++) {
 x += i;
}

Only valid if f() has no side-effects

By-hand Code Optimization

for (i=0; i < n; i++) {
 x += i * (n * 3);
}

int tmp = n*3;
for (i=0; i < n; i++) {
 x += i * tmp;
}

 Move code outside of loop when possible

for (i=0; i < f(n); i++) {
 x += i;
}

int tmp = f(n);
for (i=0; i < tmp; i++) {
 x += i;
}

Only valid if f() has no side-effects

Compilers
can do this

Compilers might not do this! (unless you
enable costly inter-procedural analysis)

By-hand Code Optimization

for (i=0; i < n; i++) {
 A[i] = 1;
}

int *A_ptr = &(A[0]);
for (i=0; i < n; i++) {
 *A_ptr = 1;
 A_ptr++;
}

 Avoid using arrays

 When you write A[i] in high level code, this is really an
address computation: &(A[0]) + i * sizeof(element)

 So it’s one addition and one multiplication (or a shift)
 Maintaining a pointer as in the code to the right is only one

addition

int *A_ptr = &(A[0]);
for (i=0; i < n; i++) {
 *A_ptr = 1;
 A_ptr++;
}

By-hand Code Optimization

for (i=0; i < n; i++) {
 A[i] = 1;
}

 Avoid using arrays

 When you write A[i] in high level code, this is really an
address computation: &(A[0]) + i * sizeof(element)

 So it’s one addition and one multiplication (or a shift)
 Maintaining a pointer as in the code to the right is only one

addition

Compilers
can do this

By-hand Code Optimization
 Loop Unrolling

for (i=0; i < 21; i++) {
 A[i] = 1;
}

for (i=0; i < 20; i+=2) {
 A[i] = 1; A[i+1] = 1;
}
A[20] = 1;

 Above we unroll by a “factor” 2
 But we have 21 iterations
 So there is “left over” work to do after the loop

By-hand Code Optimization
 Loop Unrolling

 The code on the right does half the number of comparisons
to the loop bound!

 Unrolling the full loop would in principle be faster! (no
comparisons!)

 But then there are instruction cache issues
 There would be cache misses when fetching instructions,

which may negate the benefit of loop unrolling

for (i=0; i < 21; i++) {
 A[i] = 1;
}

for (i=0; i < 20; i+=2) {
 A[i] = 1; A[i+1] = 1;
}
A[20] = 1;

By-hand Code Optimization
 Loop Unrolling

for (i=0; i < 21; i++) {
 A[i] = 1;
}

for (i=0; i < 20; i+=2) {
 A[i] = 1; A[i+1] = 1;
}
A[20] = 1;

Compilers
can do this

 The code on the right does half the number of comparisons
to the loop bound!

 Unrolling the full loop would in principle be faster! (no
comparisons!)

 But then there are instruction cache issues
 There would be cache misses when fetching instructions,

which may negate the benefit of loop unrolling

By-hand Code Optimization
 Function inlining

 The code on the right does not have any
function call
 See ICS312 to understand how expensive

function calls are

int f(int x) {
return x + 2;
}
. . .
for (i=0; i < 20; i++) {
 A[i] = f(i);
}

for (i=0; i < 20; i+=2) {
 A[i] = i + 2
}

By-hand Code Optimization
 Function inlining

 The code on the right does not have any
function call
 See ICS312 to understand how expensive

function calls are

int f(int x) {
return x + 2;
}
. . .
for (i=0; i < 20; i++) {
 A[i] = f(i);
}

for (i=0; i < 20; i+=2) {
 A[i] = i + 2
}

Compilers
can do this

Optimization Technique Galore
 There are dozens of known optimization

techniques
 The ones we saw are relatively simple
 Some are even simpler

 e.g., strength reduction
 e.g., don’t do “i * 2” but do “ i << 1”
 e.g., don’t do “x = a / 4.0” but do “x = a * 0.25”

 Some are really complicated, for instance,
instruction scheduling…
 Something all compilers do at the assembly

level, but that used to be done in high-level code

Instruction Scheduling
 Modern computers have multiple functional units

that could be used in parallel
 But only if instructions are in a good order

 Instruction scheduling:
 Think of your program as a set of n assembly

instructions
 Consider all possible permutations of the

instructions: fact(n) permutations
 Among these permutations some number lead to a

correct program outcome
 Among these correct permutations one is fast

because it uses all functional units to the max
 Instruction scheduling is the problem of finding which

permutation that is!

Conclusion
 A lot can be done to make code faster
 Compilers do sophisticated optimizations

(decades of research and development)
 The days of transforming your code into an

unreadable mess to make it fast are over!
 And have been for a while

 But there are few things that compilers
can’t / won’t do (yet), or at least not in all
cases and for any code

 A difficult such thing we look at in the next
set of lecture notes is data locality…

