Sequential Program

Optimization

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)



"
Program Optimization

® You have a program that you need to make
faster

l.e., as close to the computer’s peak performance
as possible

B You can pick better algorithms / data structures
m This is expected of a CS graduate based on
what was learned in courses like 211 / 311

e.g., Don’t do a linear search in a sorted array

e.g., Use a heap instead of a list when it make
sense

® And then you get into the “dark art” :)



" J
Optimizing and Implementation

® Do not change the spirit of the algorithm or
the data structures

Because you're using good ones

® But instead modify the details of how the
code is written

Shuffle lines of code around
Tweak data structure implementations
Use bitwise operations

Make sure you don't place too many system calls
(e.g., memory allocation)



"
By-hand Optimization

® Your profiler told you that most of the time
IS spent in some part of the code

® You focus on this part of the code, and
start tweaking it

In ICS312 | go through a small piece of code
that we try to hand-optimize in class

m | et's look at well-known code-optimization
techniques and see why they would
accelerate code

And let’'s see which ones a compiler is able to
do...



"
By-hand Code Optimization

® Move code outside of loop when possible

_ . - int tmp = n*3;

for (i=0; i < n; i++) { for (iI=)O' i < n; i++) {
X +=1 * (n * 3); x+=;|f_*tmp"

} 1 4

}

: ] ] int tmp = £(n);
for (l=0; 1 < f(n); l++) { for (lZO’ 1(<)tmp' i++) {
X += 1i; . ,

X += 1i;
i }

Only valid if f() has no side-effects



"
By-hand Code Optimization

® Move code outside of loop when possible

Compilers A
can do this
int tmp = n*3;

for (i=0; i < n; i++) { for (i=0; i < n; i++) {
X +=1 * (n * 3); x+=;|f_* tmp"
} I4

}

Qompilers might not do this! (unless yoq

enable costly inter-procedural analysis) =
n);

- [} ¥ x
for (l=0; i< f¢£f (n) ’ l++) { for (l;o . i< tmp . i++) {

} )

Only valid if f() has no side-effects



By-hand Code Optimization

® Avoid using arrays

int *A ptr = &(A[0]);

Il
=op

for (i=0; i < n; i++) { for (i=0; i < n; i++) {
A[i] ; *A ptr = 1;
} A ptr++;

}

® \When you write AJ[i] in high level code, this is really an
address computation: &(A[0]) + i * sizeof(element)

B So it's one addition and one multiplication (or a shift)

® Maintaining a pointer as in the code to the right is only one
addition



By-hand Code Optimization

® Avoid using arrays

:

for (i=0;
A[i] =
}

1 <

1
1;

n,

Compilers
can do this

-

Jt *A_ptr = &(a[0]);

.
i++) {

>

for (i=0; i < n; i++) {
*A;ptr = 1;
A;ptr++;

}

® \When you write AJ[i] in high level code, this is really an
address computation: &(A[0]) + i * sizeof(element)

B So it's one addition and one multiplication (or a shift)
® Maintaining a pointer as in the code to the right is only one

addition




By-hand Code Optimization

® |_oop Unrolling

}

) A[20] = 1;

i : : for (i=0; i1 < 20; i+=2) {
for (i=0; i < 21; i++) { c e 4. - 4.
A[i] = 1; ’ A[i] = 1; A[i+l1l] = 1;

® Above we unroll by a “factor” 2
® But we have 21 iterations
B So there is “left over” work to do after the loop




By-hand Code Optimization

® |_oop Unrolling

: : : for (i=0; i < 20; i+=2) {
for (i=0; i < 21; i++) { c e 4. - 4.
A[i] = 1; ’ \ Alil = 1; Ali+l] =1,
} A[20] = 1;

® The code on the right does half the number of comparisons
to the loop bound!

® Unrolling the full loop would in principle be faster! (no
comparisons!)

m But then there are instruction cache issues

® There would be cache misses when fetching instructions,
which may negate the benefit of loop unrolling



By-hand Code Optimization

Compilers
can do this

W

® oop Unrolling (
for (i=0; i < 21; i++) {
A[i] = 1;

}

>

dr (i=0; i < 20; i+=2) {
A[i] = 1; A[i+1] = 1;

}

A[20] = 1;

® The code on the right does half the number of comparisons

to the loop bound!

® Unrolling the full loop would in principle be faster! (no

comparisons!)

m But then there are instruction cache issues

® There would be cache misses when fetching instructions,
which may negate the benefit of loop unrolling




By-hand Code Optimization

® Function inlining

int f£(int x) {
return x + 2;

}

for (i=0; i1 < 20; i++) { '

A[i] = £(1);
}

® The code on the right does not have any
function call

m See |[CS312 to understand how expensive
function calls are



By-hand Code Optimization

® Function inlining

}

}

int f(int x) { Compilers W
return x + 2; can do this

br (i=0; i < 20; i+=2) {
oL A[i] = i + 2
for (i=0; i < 20; i++) { }

A[i] = £(1);

® The code on the right does not have any
function call

m See |[CS312 to understand how expensive
function calls are



" J——
Optimization Technique Galore

® There are dozens of known optimization
techniques

B The ones we saw are relatively simple

B Some are even simpler
e.g., strength reduction
e.g., don'tdo “i * 2" butdo “i<< 1"
e.g.,don'tdo “x=a/4.0" butdo “x=a * 0.2%”
® Some are really complicated, for instance,
instruction scheduling...

®m Something all compilers do at the assembly
level, but that used to be done in high-level code



"
Instruction Scheduling

® Modern computers have multiple functional units
that could be used in parallel

But only if instructions are in a good order
B |nstruction scheduling:

Think of your program as a set of n assembly
Instructions

Consider all possible permutations of the
instructions: fact(n) permutations

Among these permutations some number lead to a
correct program outcome

Among these correct permutations one is fast
because it uses all functional units to the max

Instruction scheduling is the problem of finding which
permutation that is!



" A
Conclusion

m A lot can be done to make code faster

m Compilers do sophisticated optimizations
(decades of research and development)

® The days of transforming your code into an
unreadable mess to make it fast are over!

And have been for a while

m But there are few things that compilers
can’'t / won’t do (yet), or at least not in all
cases and for any code

m A difficult such thing we look at in the next
set of lecture notes is data locality...



