
Henri Casanova (henric@hawaii.edu)

ICS432

Concurrent and High-Performance

Programming

Programming for
Locality

The Memory Bottleneck
! The memory is a very common

performance bottleneck that programmers
sometimes don’t think about

" When you look at code, you often pay more

attention to computation

! Example: a[i] = b[j] + c[k]

! I think “I am adding numbers”, but in fact

the access to the 3 arrays can take much
more time than doing an addition

! For this line of code, the memory is the
bottleneck!

Why the Memory Bottleneck?
! In the 70’s, everything was balanced

" The memory kept pace with the CPU

! n cycles to execute an instruction, n cycles to bring

in a word from memory

! No longer true

" CPUs have gotten 1,000x faster

" Memories have gotten 10x faster and

1,000,000x larger

Flops are free and bandwidth is expensive

and processors are STARVED for data

" And we keep adding more starved cores (but at

least they’re not getting any faster...)

Reducing the Memory Bottleneck

! The way in which computer architects
have dealt with the memory bottleneck is
via the memory hierarchy (see ICS 332)

CPU

regs

C
a
c
h
e

Memory disk

C
a
c
h
e

register
reference

L2-cache
(SRAM)

reference

memory (DRAM)
reference

disk
reference

L1-cache
(SRAM)

reference

larger, slower, cheaper

sub ns 1-2 cycles 20 cycles
hundreds

cycles10 cycles

C
a
c
h
e

L3-cache
(DRAM)

reference tens of thousands

cycles

Misses and Hits
! Cache hit: the processor references an address,

and the data at that address is in cache

" The good case

" You hope for most of your references to be hits

! Cache miss: the processor references an address,
and the data at that address is not in cache

" The bad case, which takes much more time

" A memory line is brought into the cache

! The bytes you need and some bytes around it

" So that next time, all those bytes will be in cache

! Let’s see this on a picture…

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Cache space for
2 memory lines

Array that fits in 6
memory lines

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 20”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 20”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 20”

Bring whole line from RAM to Cachecache

miss

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want to access
by at address 17”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“Great! It’s

already in cache”cache

hit

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at

address 5”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at

address 5”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at

address 5”

Bring cache line from RAM to Cachecache

miss

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

And now, the cache is full!

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 43”

We need to “evict” a memory line from the
cache to create space (say the blue one)

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 43”

Let’s say we evict the Least Recently Used
(LRU) line from the cache (blue one)

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 43”

Bring cache line from RAM to Cachecache

miss

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 12”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 12”

Cache/Memory Lines

Memory {8-byte

memory line

Cache

CPU
Processor

Program says:

“I want byte at
address 12”

We had the blue line in cache, but evicted

it, so now we’ll incur another cache miss…

All this Happens in Hardware
! All cache management is done in hardware

! The OS and the programmer doesn’t have to do

anything special, and in fact can’t influence how the
cache works

! Real hardware is more complex than what we saw in
our animation

" Several levels of cache

" What happens on a write? (update only the cache or both the

catch and the memory?)

" Which cache lines should be evicted?

" What happens with multiple cores?

" See a Computer Architecture course

! But regardless, why does it all work?

Locality in your Programs
! The memory hierarchy is useful because of

“locality”

! Temporal locality: a memory location that was

referenced in the past is likely to be referenced
again

! If you reference a byte, you’ll reference it again

soon (think of updating a counter)

! Spatial locality: a memory location next to one

that was referenced in the past is likely to be
referenced in the near future

! If you reference a byte, you’ll soon reference a

byte close to it (think of going through an array)

How Much Does Locality Help?
! Let’s look at the locality_no_locality.c program on

the course Web site and run it…

! This program does a “linear scan” of an array,
which leads to the largest possible number of
cache hits

! After loading a memory line, one references all its bytes

! The program then does a “strided scan” of the array

! After loading a memory line, one references only one of

its byte, and then the line is evicted before another one
of its bytes is referenced

! Let’s look at run results on my laptop

Results on My Laptop

-O0 -Ofast

clang
Linear: 2.52 s

Strided: 10.51 s

4.17x

Linear: 0.93 s

Strided: 14.0 s

15.01x

gcc
Linear: 3.11 s

Strided: 10.1 s

3.25x

Linear: 1.05 s

Strided: 13.70 s

13.05x

flag

compiler

! Weirdly, both compilers make the strided
code slower when optimizing!

Locality in your Programs
! It turns out that most (useful) programs have fairly high

temporal/spatial locality

! Even if the programmer doesn’t know what locality is

! But when we strive for high performance we want our code to
have the maximum amount of locality

! And the compiler isn’t always good at this!

! A programmer should keep a mental picture of the memory

layout of the application data, and reason about locality

! “Whenever I know that an instruction will bring some data from

memory into cache, I should try to reuse that data as much as
possible”

! This can be extremely complex, but luckily there are a few
well-known techniques and cases

! The first “textbook example” is with 2-D arrays…

Example: 2-D Array Initialization

int a[200][200]; int a[200][200];
for (i=0;i<200;i++) { for (j=0;j<200;j++) {
 for (j=0;j<200;j++) { for (i=0;i<200;i++) {
 a[i][j] += 1; a[i][j] += 1;
 } }
} }

! Show of hands: which alternative is
fastest?

" i-j order is faster

" j-i order is faster

" they are the same

2-D Array Accesses
! I wrote a simple program that initializes a two-

dimensional array either along rows or along
columns

! It comes with a Makefile that compiles the two
version of the code with different compiler
optimization flags

! It’s on the course Web site (locality_example.zip)

! Let’s look at results obtained on my Linux server…

! Let’s see if:

" One loop order is better than the other…

" What compiler optimization does to

performance…

Running Locality Example (clang)

! Results with the clang compiler!

-O0 -Ofast

for i; for j 35.48 s 5.25 s

for j; for i 59.97 s 49.34 s

flag

i-j order the compiler is
not able to
optimize for
locality at all!

~70% performance loss
due to wrong loop order

Running Locality Example (gcc)

! Results with the gcc compiler!

-O0 -Ofast

for i; for j 33.56 s 5.29 s

for j; for i 60.56 s 49.30 s

flag

i-j order the compiler is
not able to
optimize for
locality at all!

~80% performance loss
due to wrong loop order

These numbers are a bit old, we
can re-run this right now...

Take Away

! Even on this textbook example, if as a
programmer I write the loops in the j-i order,
then my program will go slower regardless of
what I do with these two compilers!

! So, sadly, as a programmer, I should think
about data locality

" Which is known to be difficult

! First let’s understand why the i-j order goes
faster than the j-i order….

2-D Arrays in Memory
! A static 2-D array is declared as

	 	 <type> <name>[<size>][<size>]

! For instance: int myarray[10][30];

! The elements of a 2-D array are stored in contiguous

memory cells

" This true in C/C++, not in Java though

! But we now have a problem:

" The array is 2-D (conceptually)

" Computer memory is 1-D (just a sequence of addresses)

! Therefore, we need a mapping from 2-D to 1-D

" From a 2-D abstraction to a 1-D implementation

" The 2-D abstraction is provided to us by programming

languages for convenience

! Because as humans we like multi-dimensional arrays

Mapping from 2-D to 1-D?

nxn 2-D array
1-D computer memory

A 2-D to 1-D mapping

Another 2-D to 1-D mappingn2! possible mappings

Row-Major, Column-Major
! Luckily, only 2 of the n2! mappings are

implemented in common languages

! Row-Major:

" Rows are stored contiguously

! Column-Major:

" Columns are stored contiguously

1st row 2nd row 3rd row 4th row

1st col 2nd col 3rd col 4th col

Row-Major

! C uses Row-Major

address

memory/cache line

rows in

memory

memory

lines

! Array elements are stored in contiguous
memory lines

Row-Major
! C uses Row-Major

! First option

int a[200][200];
for (i=0;i<200;i++)
 for (j=0;j<200;j++)
 a[i][j] += 1;

! Second option

int a[200][200];
for (j=0;j<200;j++)
 for (i=0;i<200;i++)
 a[i][j] += 1;

Counting cache misses
! nxn 2-D array, element size = e bytes, cache line size = b bytes

memory/cache line

memory/cache line

! One cache miss for every cache line: n2 x e / b

! Total number of memory accesses: n2

! Miss rate: e/b

! Example: Miss rate = 4 bytes / 64 bytes = 6.25%

" Unless the array is very small

! One cache miss for every access

! Example: Miss rate = 100%

" Unless the array is very small

Array Initialization in C

! First option

int a[200][200];
for (i=0;i<200;i++)
 for (j=0;j<200;j++)
 a[i][j]=2;

! Second option

int a[200][200];
for (j=0;j<200;j++)
 for (i=0;i<200;i++)
 a[i][j]=2;

Great Locality

Awful Locality

Counting Cache Misses
! It would be interesting to count cache misses to see that

the differences in performance are really due to the
memory bottleneck

! We can reason about the code and the hardware, but
that can get really difficult

! There are tools to measure this

! On Linux: perf

" sudo apt install linux-tools-generic

! Can be used to count Lowest Level Cache (LLC) misses

" perf stat -e LLC-misses <command>

! For our locality example program, the j-i order leads to

about 30x more LLC cache misses than the i-j order

Loop Fusion
! Consider the following code:

double a[N], b[N];
for (i=0;i<N;i++) {
 a[i] = i*i;
}
for (i=0;i<N;i++) {
 b[i] = a[i] + (double)i;
}

! In this code, the second loop
experiences cache misses
when accessing array a

! Although array a was loaded
into RAM entirely, if N is
large, it is no longer in cache

! If we fuse the two loops we
get better data locality

! And less loop overhead!

Loop Fusion
! Consider the following code:

double a[N], b[N];
for (i=0;i<N;i++) {
 a[i] = 2.0;
}
for (i=0;i<N;i++) {
 b[i] = a[i] + (double)i;
}

! In this code, the second loop
experiences cache misses
when accessing array a

! Although array a was loaded
into RAM entirely, if N is
large, it is no longer in cache

! If we fuse the two loops we
get better data locality

! And less loop overhead!

double a[N], b[N];
for (i=0;i<N;i++) {
 a[i] = I * i;
 b[i] = a[i] + (double)i;
}

Matrix Multiplication
! A classic example for locality-aware programming

is matrix multiplication

	 for (i=0; i<N; i++)

	 	 for (j=0; j<N; j++)

	 	 	 for (k=0; k<N; k++)

	 	 	 	 c[i][j] += a[i][k] * b[k][j];

! There are 6 possible orders for the three loops

" i-j-k, i-k-j, j-i-k, j-k-i, k-i-j, k-j-i

! Each order corresponds to a different access
patterns of the matrices

! Let’s focus on the inner loop, as it is the one that’s
executed most often

Matrix Multiplication
! To determine the best i-j-k order, we have two

options

! Option #1: pragmatic

! Implement the 6 options

! Run them on large matrices see which one’s

faster

! Use perf to count cache misses and support

our findings

! Option #2: “theory”

! Reason about locality in our program

! We can all do Option #1 easily, so let’s do Option
#2

Inner Loop Memory Accesses
for (i=0;i<N;i++)

	 	 for (j=0;j<N;j++)

	 	 	 for (k=0;k<N;k++)

	 	 	 	 c[i][j] += a[i][k] * b[k][j];

! Reasoning about the whole code above it too
complicated

! We note that the inner loop is executed n2 times

! Se a common technique is to simply think of the

inner loop

! Each matrix element can be accessed in three

modes in the inner loop

" Constant: doesn’t depend on the inner loop’s index

" Sequential: contiguous addresses

" Strided: non-contiguous addresses (N elements apart)

Inner Loop Memory Accesses
! Each matrix element can be accessed in three

modes in the inner loop

" Constant: doesn’t depend on the inner loop’s index

" Sequential: contiguous addresses

" Strided: non-contiguous addresses (N elements apart)

	 	 c[i][j] += a[i][k] * b[k][j];

! i-j-k: Constant 	 	 Sequential	 	 Strided

! i-k-j: Sequential 	 	 Constant	 	 Sequential

! j-i-k: Constant	 	 Sequential	 	 Strided

! j-k-i: Strided	 	 Strided	 	 	 Constant

! k-i-j: Sequential	 	 Constant	 	 Sequential

! k-j-i: Strided	 	 Strided	 	 	 Constant

Loop order and Performance
! Constant access is better than sequential

access

" it’s always good to have constants in loops

because they can be put in registers (as we’ve
seen in our very first optimization)

! Sequential access is better than strided
access

" sequential access is better than strided

because it utilizes the cache better

! Now we can rank all 6 options

Best Loop Ordering?
	 	 c[i][j] += 	 a[i][k] * b[k][j];

	 i-j-k: Constant 	 	 Sequential	 	 Strided

	 i-k-j: Sequential 	 	 Constant	 	 Sequential

	 j-i-k: Constant	 	 Sequential	 	 Strided

	 j-k-i: Strided	 	 	 Strided	 	 	 Constant

	 k-i-j: Sequential	 	 Constant	 	 Sequential

	 k-j-i: Strided	 	 	 Strided	 	 	 Constant

! k-i-j and i-k-j have the best performance

! i-j-k and j-i-k have worse performance

! j-k-i and k-j-i have the worst performance

! Let’s run this and see... (mm_locality_example.zip)

What about Java?

! In Java a 2-D array is not a single contiguous
zone of memory, but an array of pointers to
row arrays

! To each row of a 2-D array could be stored in
a completely different zone of RAM

! Regardless, like in C, locality is good when
accessing arrays along rows, and not good
when accessing arrays along columns

! Easy to check with a simple program (let’s
run RowColMajor.java on course Web site)

Programming for Locality
! When designing data structures, and when designing

programs that operate on data structures, performance
can be gained by increasing data locality

" e.g., Java’s ArrayList vs. LinkedList

! But it can be a lot of work and make the code less

readable

! Classic situation: a code with data structures full of

pointers everywhere

" Great for convenience/expressivity

" Not great for locality (“pointer chasing”)

! Developers have to make calls regarding the trade-off
between “clean/convenient” and “fast”

" Sometimes one hits a “best of both worlds jackpot”

Data Structures and Locality
! One difficult problem is picking/implementing data

structures that will improve locality

! Let’s use a guiding example of a binary search tree

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

Data Structures and Locality
! One difficult problem is picking/implementing data

structures that will improve locality

! Let’s use a guiding example of a binary search tree

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

Allocating this tree in RAM with a
different new/malloc for each node
is the recipe for bad locality (sorry
ICS 211 homework)

Data Structures and Locality
! One difficult problem is picking/implementing data

structures that will improve locality

! Let’s use a guiding example of a binary search tree

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

This traversal could
incur 5 cache misses

Data Structure Memory Layout
! We need to come up with a good memory layout for

our data structure

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

Data Structure Memory Layout
! Let’s make sure we allocate particular nodes next to

each other in RAM (i.e., in arrays)

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

Data Structure Memory Layout
! We think of is as a tree, but it’s really a big array

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31

! Determining a node children/parent is now based on simple-ish
discrete math based on array indices

! We made the implementation much less convenient, but that
the price we pay for better locality

! Arrays are just good for locality :(

Data Structure Memory Layout
! Say that 4 nodes fit in a cache line

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

Data Structure Memory Layout
! Say that 4 nodes fit in a cache line

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3 4

5 8 11 14

1615131210976

17

18 19

20 23 26 29

3130282725242221

This traversal incurs
at most 2 cache
misses!

Cache-Aware
! If in your program you explicitly use the size of the cache

and/or of the cache line as a parameter to make decisions,
one say that the program is cache-aware

! In out previous example, our program could determine at
compile/run time the cache line size, which then tells use the
best size of our blue boxes, which then defines the in-
memory layout

! And now, we have improved locality

! You can see how this gets complicated, especially because

there are multiple levels of cache (in a few slides)

! Given a bunch of caches, each with their own cache line

sizes, figuring out the best memory layout for a useful data
structure is very difficult

" But a lot of smart people have done it

Cache-Oblivious
! Wouldn’t it be great if your data structure layout promoted locality

for any cache configuration?

! This is called cache-obliviousness: the program does not

explicitly use the size of the cache or cache lines as a parameter,
and yet achieves good locality

! This has been a very active field of research and development
and there are cache-oblivious layouts

! For our binary search tree example, the van Emde Boas layout is
a cache-oblivious solution

" It’s a somewhat complicated recursive layout

! See an advanced data-structure course for more on this kind of

data-structures

" Basically, take all the good stuff in ICS311 and then say “what about

locality?” e.g., a binary search on a sorted array has terrible locality!

Multi-Threading
! Reasoning about locality for single-threaded

programs is complicated

! When one throws multi-threading into the mix, it’s

even more complicated

! We want to avoid threads competing for the cache

(i.e., evicting each other’s data from cache)

! Ideally, threads would cooperate: a thread loads in

cache something that other threads happen to need

! See prof. Sitchinava’s Parallel Algorithms course for

more on such topics

! Let’s look at the hardware deals with caches in multi-

core machines…

Multi-Core and Caches
! Where are the caches in a multi-proc/core machine?

! Two options:

Core #1

Private Cache

RAM

Core #n

Private Cache

Core #1

Shared Cache

RAM

Core #n…

…

…

private

caches

shared

caches

Shared Caches: Good and Bad
! Shared is good:

" Cache placement identical to single cache

! Only one copy of any cached block

! Can’t have different values for the same memory location

" Good interference

! One processor may prefetch data for another

! Two processors can each access data within the same cache block,

enabling fine-grain sharing

! Shared is bad:

" Bandwidth limitation

! Difficult to scale to a large number of processors/cores

! Keeping all processors working in cache requires a lot of bandwidth

" Size limitation

! Building a fast large cache is expensive

" Bad interference

! One processor may flush another processor’s data from cache

Shared Caches
! Shared caches have known a strange evolution

! Early 1980s

" Alliant FX-8

! 8 processors with crossbar to interleaved 512KB cache

" Encore & Sequent

! first 32-bit microprocessors

! two procs per board with a shared cache

! Then disappeared

! Only to reappear in recent MPPs

" Cray X1: shared L3 cache

" IBM Power 4 and Power 5: shared L2 cache

! Typical multi-proc systems do not use shared caches

! But they are now common in multi-core systems

Caches and multi-core
! Typical multi-core architectures use distributed

L1 caches
Core #1 Core #2

L1 Cache L1 Cache

! But lower levels of caches are shared

Core #1 Core #2

L1 Cache L1 Cache

L2 Cache

Multi-proc & multi-core systems

Core #1 Core #2

L1 Cache L1 Cache

L2 Cache

Core #1 Core #2

L1 Cache L1 Cache

L2 Cache

Processor #1 Processor #2

RAM

My Linux Server (lstopo)

My Linux Server

Two processors (one per “socket”)

My Linux Server

4 cores per processor

(or is it 8? stay tuned)

My Linux Server

Shared L3 cache

Private L2 and L1 caches

(separate L1 data and instruction caches)

Private Caches

! The main problem with private caches is
that of memory consistency

! Memory consistency is jeopardized by
having multiple caches

" P1 and P2 both have a cached copy of a data

item

" P1 writes to it, possibly write-through to

memory

" At this point P2 owns a stale copy

! When designing a multi-processor system,
one must ensure that this cannot happen

" By defining protocols for cache coherence

Snoopy Cache-Coherence

! The memory bus is a broadcast medium

! Caches contain information on which addresses they store

! Cache Controller “snoops” all transactions on the bus

" A transaction is a relevant transaction if it involves a cache block
currently contained in this cache

" Take action to ensure coherence

! invalidate, update, or supply value

! This is the kind of thing hapenning, for instance, in the Intel i7
processor (with many bells and whistles)

State

Address

Data P0

$ $

Pn

Mem Mem

memory bus
memory op from Pn

bus snoop

Limits of Snoopy Coherence

MEM MEM° ° °

PROC

 cache

PROC

 cache

° ° °

Assume:

	 4 GHz processor

=> 16 GB/s inst BW per processor (32-bit)

=> 9.6 GB/s data BW at 30% load-store of 8-

byte elements

Suppose 98% inst hit rate and 90% data hit
rate

=> 320 MB/s inst BW per processor

=> 960 MB/s data BW per processor

=> 1.28 GB/s combined BW

Assuming 10 GB/s bus bandwidth

	 8 processors will saturate the bus

25.6 GB/s

1.28 GB/s

Directory-based Coherence
! Idea: Implement a “directory” that keeps track of

where each copy of a data item is stored

! The directory acts as a filter

" processors must ask permission for loading data from
memory to cache

" when an entry is changed the directory either update or
invalidate cached copies

! Eliminates the overhead of broadcasting/
snooping, thus bandwidth consumption is
reduced

! But is slower in terms of latency

! Used to scale up to numbers of processors that

would saturate the memory bus

Example machine
! SGI Altix UV

! 2,560 cores

! 16TB of Shared Memory

! Uses a mixture of snoopy and

directory-based coherence

! Global address space is

possible for multiple such
nodes connected over a
switch...

! Costs a lot of money!

" But then you don’t have to

take ICS632 :)

Conclusion
! Locality is important due to caches and is thus a

constant concern for performance

! Compilers are not great at dealing with it

! Bottom-line: locality makes the programmer’s life

difficult but has high payoff if done right

" A lot of algorithmic and implementation complexity/difficulty

! This leads to a lot of interesting research on locality
issues

" Awesome if you’re a computer science graduate student /
researcher in needs of a research topic

" Not so great if you’re an engineer and just want some code
to go fast

! Let’s look at Homework Assignment #12… (last, and
short, one!)

