Programming for

Locality

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" J
The Memory Bottleneck

® The memory is a very common
performance bottleneck that programmers
sometimes don’t think about

When you look at code, you often pay more
attention to computation

®m Example: a[i] = b[j] + c[K]
® | think “| am adding numbers”, but in fact

the access to the 3 arrays can take much
more time than doing an addition

® For this line of code, the memory is the
bottleneck!

"
Why the Memory Bottileneck?

® In the 70’s, everything was balanced
The memory kept pace with the CPU

= n cycles to execute an instruction, n cycles to bring
in a word from memory

® No longer true
CPUs have gotten 1,000x faster

Memories have gotten 10x faster and
1,000,000x larger

= Flops are free and bandwidth is expensive
and processors are STARVED for data

And we keep adding more starved cores (but at
least they’re not getting any faster...)

"
Reducing the Memory Bottleneck

® The way in which computer architects
have dealt with the memory bottleneck is
via the memory hierarchy (see ICS 332)

larger, slower, cheaper

Cc
a C C
CPU | c a a
h c c Memory
regs € h h
e e
register L1-cache L2-cache L3-cache | memory (DRAM) disk
reference (SRAM) (SRAM) (DRAM) reference reference
reference reference reference hundreds tens of thousands

sub ns 1-2 cycles 10 cycles 20 cycles cycles cycles

" A
Misses and Hits

m Cache hit: the processor references an address,
and the data at that address is in cache

The good case
You hope for most of your references to be hits
B Cache miss: the processor references an address,
and the data at that address is not in cache
The bad case, which takes much more time

A memory line is brought into the cache
= The bytes you need and some bytes around it

So that next time, all those bytes will be in cache
m | et's see this on a picture...

"
Cache/Memory Lines

Processor
CPU

Cache

Memory - (TTFTTTFTTTATTITTTITY

o’

8-byte
memory line

Cache/Memory Lines

Processor

CPU

Cache

J Cache space for

\l 2 memory lines

Array that fits in 6
memory lines

\4

Memory

[T

o’

8-byte

memory line

"

Cache/Memory Lines

Processor
CPU

Cache | | |

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache | | |

vormory AT TTHEAT T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache (NI

vorory (NI 1T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (NI

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (LTI

vomory NN THAARAT T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache (LTI

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (LTI

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (LTI

vormory TN TN T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache

Memory

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

ache ([T

vomory NN THAARAT T

8-byte
memory line

"
Cache/Memory Lines

Processor
CPU

Cache [[TTTTTITTITTITY

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

ache [T

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

ache [T

vormory NN TR TR T

8-byte
memory line

"

Cache/Memory Lines

Processor

8-byte
memory line

"

Cache/Memory Lines

Processor

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (TN

vormory NN TR TR T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache

vorory (NI T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache [T

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (T

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (T

omory NN TETRARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor

8-byte
memory line

" J
All this Happens in Hardware

® All cache management is done in hardware

® The OS and the programmer doesn’t have to do
anything special, and in fact can’t influence how the
cache works

®m Real hardware is more complex than what we saw In
our animation
Several levels of cache

What happens on a write? (update only the cache or both the
catch and the memory?)

Which cache lines should be evicted?
What happens with multiple cores?
See a Computer Architecture course

m But regardless, why does it all work?

"
Locality in your Programs

® The memory hierarchy is useful because of
“locality”
® Temporal locality: a memory location that was
referenced in the past is likely to be referenced
again
m |f you reference a byte, you'll reference it again
soon (think of updating a counter)

m Spatial locality: a memory location next to one
that was referenced in the past is likely to be
referenced in the near future

m |[f you reference a byte, you'll soon reference a
byte close to it (think of going through an array)

"
How Much Does Locality Help?

m | et’'s look at the locality no_locality.c program on
the course Web site and run it...

® This program does a “linear scan” of an array,
which leads to the largest possible number of
cache hits

m After loading a memory line, one references all its bytes

® The program then does a “strided scan” of the array

m After loading a memory line, one references only one of
its byte, and then the line is evicted before another one
of its bytes is referenced

m | et's look at run results on my laptop

" J—
Results on My Laptop

flag
-O0 -Ofast
compiler

Linear: 2.52 s Linear: 0.93 s
clang Strided: 10.51 s |Strided: 14.0 s

4.17x 15.01x

Linear: 3.11 s Linear: 1.05 s
gcc Strided: 10.1 s Strided: 13.70 s

3.25x 13.05x

m Weirdly, both compilers make the strided
code slower when optimizing!

"
Locality in your Programs

® |t turns out that most (useful) programs have fairly high
temporal/spatial locality

® Even if the programmer doesn’t know what locality is
®m But when we strive for high performance we want our code to
have the maximum amount of locality
® And the compiler isn’t always good at this!
® A programmer should keep a mental picture of the memory
layout of the application data, and reason about locality

® “Whenever | know that an instruction will bring some data from
memory into cache, | should try to reuse that data as much as
possible”

B This can be extremely complex, but luckily there are a few
well-known techniques and cases

® The first “textbook example” is with 2-D arrays...

Example: 2-D Array Initialization

int a[200][200]; int a[200][200];
for (i=0;i<200;i++) { for (j=0;3j<200;j++) {
for (j=0;3<200;j++) { for (i=0;i<200;i++) {
a[i][j1 += 1; afi][j] += 1;
} }
} }

B Show of hands: which alternative is
fastest?

I-j order is faster
j-1 order is faster
they are the same

" J
2-D Array Accesses

® | wrote a simple program that initializes a two-
dimensional array either along rows or along
columns

® [t comes with a Makefile that compiles the two
version of the code with different compiler
optimization flags
B |t's on the course Web site (locality _example.zip)
m | et's look at results obtained on my Linux server...
m | et’s see if:
One loop order is better than the other...

What compiler optimization does to
performance...

"
Running Locality Example (clang)

®m Results with the clang compiler!

flag
-O0 -Ofast - \
i-j order the compiler is
not able to
_ _ optimize for
for i; fOI'j 3548 s 9.25s locality at all!
forj;fori | 59.97s | 49.34 s
/ \

~70% performance loss
due to wrong loop order

" JE
Running Locality Example (gcc)

m Results with the gcc compiler!

flag

-0O0 -Ofast - ~

i-j order the compiler is

not able to
_ _ optimize for

for i; fOI'j 33.56 s 5.29 s locality at all!

forj; fori | 60.56s | 49.30s
A 4)
o\ These numbers are a bit old, we

~80% performance loss can re-run this right now...
due to wrong loop order _)

"
Take Away

®m Even on this textbook example, if as a
programmer | write the loops in the j-1 order,
then my program will go slower regardless of
what | do with these two compilers!

® S0, sadly, as a programmer, | should think
about data locality

Which is known to be difficult

m First let's understand why the I-j order goes
faster than the j-i order....

"
2-D Arrays in Memory

m A static 2-D array is declared as
<type> <name>[<size>] [<size>]

m Forinstance: int myarray[10][30];

B The elements of a 2-D array are stored in contiguous
memory cells

This true in C/C++, not in Java though
® But we now have a problem:

The array is 2-D (conceptually)

Computer memory is 1-D (just a sequence of addresses)
® Therefore, we need a mapping from 2-D to 1-D

From a 2-D abstraction to a 1-D implementation

The 2-D abstraction is provided to us by programming
languages for convenience

®m Because as humans we like multi-dimensional arrays

Mapping from 2-D to 1-D?

1-D computer memory
nxn 2-D array

_

— | [[[

A 2-D to 1-D mapping

— [l [T .

n2! possible mappings Another 2-D to 1-D mapping

Row-Major, Column-Major

m |_uckily, only 2 of the n2! mappings are
Implemented in common languages

1st row 2nd row 3rd row 4th row

®m Row-Major: B [T T 1 T 1

Rows are stored contiguously

1st col 2nd col 3rd col 4th col

® Column-Major: H B [] [|

Columns are stored contiguously

"
Row-Major

m C uses Row-Major

address

. >
rows in
memory | NN S

memory

lines _ I

memory/cache line

® Array elements are stored in contiguous
memory lines

"
Row-Major

m C uses Row-Major

® First option
int a[200][200];
for (i=0;i<200;i++)
for (3j=0;3j<200;j++)
afi][j] += 1;

® Second option
int a[200][200];
for (j=0;3<200;j++)
for (i=0;i<200;i++)
a[i][j] += 1;

VYYYYYY

Counting cache misses

B nxn 2-D array, element size = e bytes, cache line size = b bytes

memory/cache line

One cache miss for every cache line: n2xe /b
Total number of memory accesses: n2
Miss rate: e/b

Example: Miss rate = 4 bytes / 64 bytes = 6.25%
Unless the array is very small

memory/cache line

®m One cache miss for every access

m Example: Miss rate = 100%
Unless the array is very small

VYYYYYY

Array Initialization in C

® First option
int a[200][200];
for (i=0;i<200;i++)
for (3j=0;3j<200;j++)
a[i]l[j1=2;

Great Locality

int a[200][200];
for (3j=0;3j<200;j++)

for (i=0;i<200;i++)

al[il[]j1=2;

Awful Locality

"
Counting Cache Misses

® |t would be interesting to count cache misses to see that
the differences in performance are really due to the
memory bottleneck

® \We can reason about the code and the hardware, but
that can get really difficult

® There are tools to measure this
® On Linux: perf
sudo apt install linux-tools-generic

®m Can be used to count Lowest Level Cache (LLC) misses
perf stat -e LLC-misses <command>

® For our locality example program, the |-i order leads to
about 30x more LLC cache misses than the i-j order

" JE
Loop Fusion
® Consider the following code:

double a[N], b[N];
for (i=0;i<N;i++) {

a[i] = i*i;

® |n this code, the second loop
experiences cache misses
} when accessing array a
for (i=0;i<N;i++) {
b{i] = a[i] + (double)i; Although array a was Ipaded
} into RAM entirely, if N is
large, it is no longer in cache

m |f we fuse the two loops we
get better data locality

® And less loop overhead!

" JEE
Loop Fusion
® Consider the following code:

gouble a[N], b[N];

double a[N], b[N];
for (i=0;i<N;i++) {

}

a[i]
b[i]

I * 1,

a[i] + (double)i;

® |n this code, the second loop
experiences cache misses
when accessing array a

m Although array a was loaded
into RAM entirely, if N is
large, it is no longer in cache

m |f we fuse the two loops we
get better data locality

® And less loop overhead!

" JE
Matrix Multiplication

m A classic example for locality-aware programming
IS matrix multiplication

for (i=0; i<N; i++)
for (3=0; J<N; J++)
for (k=0; k<N; k++)
c[i][J] += a[i][k] * b[k][3]]’

® There are 6 possible orders for the three loops
i-j-K, i-k-j, j-i-K, j-k-i, kei-j, k-j-i
®m Each order corresponds to a different access
patterns of the matrices

m | et's focus on the inner loop, as it is the one that's
executed most often

" J
Matrix Multiplication

® To determine the best i-j-k order, we have two
options
m Option #1: pragmatic
B [mplement the 6 options

® Run them on large matrices see which one’s
faster

m Use perf to count cache misses and support
our findings

m Option #2: “theory”
m Reason about locality in our program

® \We can all do Option #1 easily, so let's do Option
#2

"
Inner Loop Memory Accesses

for (i=0;i<N;i++)
for (j=0;j<N;j++)
for (k=0;k<N;k++)
c[il[j] += a[i] [k] * b[k][j];

m Reasoning about the whole code above it too
complicated

® \We note that the inner loop is executed n? times

®m Se a common technique is to simply think of the
Inner loop

® Each matrix element can be accessed in three
modes in the inner loop

Constant: doesn’t depend on the inner loop’s index
Sequential: contiguous addresses
Strided: non-contiguous addresses (N elements apart)

"
Inner Loop Memory Accesses

B Fach m_atrix e_Iement can be accessed in three
modes in the inner loop

Constant: doesn’t depend on the inner loop’s index
Sequential: contiguous addresses
Strided: non-contiguous addresses (N elements apart)

clilu] += afillk] * b[k]D];

m i-j-k: Constant Sequential Strided

m i-k-j: Sequential Constant Sequential
m j-i-k: Constant Sequential Strided

m j-k-i: Strided Strided Constant
m k-i-j: Sequential Constant Sequential

m k-j-i: Strided Strided Constant

" J——_
Loop order and Performance

®m Constant access is better than sequential
access

it's always good to have constants in loops
because they can be put in registers (as we've
seen in our very first optimization)

m Sequential access is better than strided
access

sequential access is better than strided
because it utilizes the cache better

® Now we can rank all 6 options

"
Best Loop Ordering?

clilol += afijlk] * bk][j];
i-j-k: Constant Sequential Strided
I-k-j: Sequential Constant Sequential
j-i-k: Constant Sequential Strided
j-k-i: Strided Strided Constant
k-i-j: Sequential Constant Sequential
k-j-i: Strided Strided Constant

® k-i-j and i-k-j have the best performance

® i-j-k and j-i-k have worse performance

® j-k-i and k-j-i have the worst performance

m | et’s run this and see... (mm_locality example.zip)

" A
What about Java?

® |n Java a 2-D array is not a single contiguous
zone of memory, but an array of pointers to
row arrays

® To each row of a 2-D array could be stored in
a completely different zone of RAM

m Regardless, like in C, locality is good when
accessing arrays along rows, and not good
when accessing arrays along columns

®m Easy to check with a simple program (let’s
run RowColMajor.java on course Web site)

"
Programming for Locality

® \When designing data structures, and when designing
programs that operate on data structures, performance
can be gained by increasing data locality

e.g., Java’s ArrayList vs. LinkedList

m But it can be a lot of work and make the code less
readable

m Classic situation: a code with data structures full of
pointers everywhere
Great for convenience/expressivity
Not great for locality (“pointer chasing”)

m Developers have to make calls regarding the trade-off
between “clean/convenient” and “fast”

Sometimes one hits a “best of both worlds jackpot”

" J
Data Structures and Locality

® One difficult problem is picking/implementing data
structures that will improve locality

m | et's use a guiding example of a binary search tree

" JE
Data Structures and Locality

® One difficult problem is picking/implementing data
structures that will improve locality

m | et's use a guiding example of a binary search tree

 Allocating this tree in RAM with a |
e different new/malloc for each node |
Lis the recipe for bad locality (sorry |

G (plosatihomewo) J gl g
(&)((9)(10)(12)(13)(15)(16)(21)(22)(24)(28)(27) (28) (30) (31,

" JE
Data Structures and Locality

® One difficult problem is picking/implementing data
structures that will improve locality

m | et's use a guiding example of a binary search tree

5 . = P N—
S I Tt AN S =S e A & e iy et L N
4 .
|
!

‘This traversal could

e ° ‘incur 5 cache misses @

"
Data Structure Memory Layout

® \We need to come up with a good memory layout for
our data structure

" S
Data Structure Memory Layout

® | et's make sure we allocate partlcular nodes next to
each other in RAM (i.e., in arrays

M-"!IP"A

TELELTL

Data Structure Memory Layout

® \We think of is as a tree, but it's really a big array

DoG
i ()0 o) o) 2 | [o
(@)@ (o0 o

® Determining a node children/parent is now based on simple-ish
discrete math based on array indices

® \Ve made the implementation much less convenient, but that
the price we pay for better locality

® Arrays are just good for locality :(

" S
Data Structure Memory Layout

m Say that 4 nodes fit in a cache line

OOOEE®E®@®@@®®@E@E@E
OO0 OOORLEOEREEEEOOEDEEEE®

" S
Data Structure Memory Layout

m Say that 4 nodes fit in a cache line

tat most 2 cache }

° ° _‘ mlsses' ’
)) () (W) Tt (o
(D)) ()9 (e (2)(2)(2)()(2)()(3)()

0000 0000 0000 0000 G000 9800 S

" A
Cache-Aware

® |f in your program you explicitly use the size of the cache
and/or of the cache line as a parameter to make decisions,
one say that the program is cache-aware

® |n out previous example, our program could determine at
compile/run time the cache line size, which then tells use the
best size of our blue boxes, which then defines the in-
memory layout

® And now, we have improved locality

B You can see how this gets complicated, especially because
there are multiple levels of cache (in a few slides)

® Given a bunch of caches, each with their own cache line
sizes, figuring out the best memory layout for a useful data
structure is very difficult

But a lot of smart people have done it

" A
Cache-Oblivious

® \Wouldn't it be great if your data structure layout promoted locality
for any cache configuration?

® This is called cache-obliviousness: the program does not
explicitly use the size of the cache or cache lines as a parameter,
and yet achieves good locality

® This has been a very active field of research and development
and there are cache-oblivious layouts

® For our binary search tree example, the van Emde Boas layout is
a cache-oblivious solution
It's a somewhat complicated recursive layout

B See an advanced data-structure course for more on this kind of
data-structures

Basically, take all the good stuff in ICS311 and then say “what about
locality?” e.g., a binary search on a sorted array has terrible locality!

"
Multi-Threading

m Reasoning about locality for single-threaded
programs is complicated

® \When one throws multi-threading into the mix, it's
even more complicated

® \We want to avoid threads competing for the cache
(i.e., evicting each other’s data from cache)

m |deally, threads would cooperate: a thread loads in
cache something that other threads happen to need

m See prof. Sitchinava’s Parallel Algorithms course for
more on such topics

m | et’s look at the hardware deals with caches in multi-
core machines...

Multi-Core and Caches

®m \Where are the caches in a multi-proc/core machine?

e

Private Cache

e

®m Two options:

e

Private Cache

private
caches

Shared Cache

shared
caches

" A
Shared Caches: Good and Bad

® Shared is good:

Cache placement identical to single cache
= Only one copy of any cached block
m Can’t have different values for the same memory location

Good interference
® One processor may prefetch data for another

® Two processors can each access data within the same cache block,
enabling fine-grain sharing

m Shared is bad:

Bandwidth limitation

= Difficult to scale to a large number of processors/cores

m Keeping all processors working in cache requires a lot of bandwidth
Size limitation

® Building a fast large cache is expensive
Bad interference

= One processor may flush another processor’s data from cache

" A
Shared Caches

m Shared caches have known a strange evolution

® Farly 1980s

Alliant FX-8
m 8 processors with crossbar to interleaved 512KB cache

Encore & Sequent
® first 32-bit microprocessors
® two procs per board with a shared cache

® Then disappeared

® Only to reappear in recent MPPs
Cray X1: shared L3 cache
IBM Power 4 and Power 5: shared L2 cache

® Typical multi-proc systems do not use shared caches
® But they are now common in multi-core systems

" A
Caches and multi-core

B Typical multi-core architectures use distributed

L1 caches
| Core#1 | | Core#2 |

L1 Cache L1 Cache

® But lower levels of caches are shared

L1 Cache L1 Cache

L2 Cache

"
Multi-proc & multi-core systems

Processor #1 Processor #2

L1 Cache L1 Cache L1 Cache L1 Cache

L2 Cache L2 Cache

"
My Linux Server (Istopo)

Machine (24GB total)

NUMANode P#0 (12GB) NUMANode P#1 (12GB)
Package P#1 Package P#0
L3 (8192KB) L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1ld (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1li (32KB) L1i (32KB)
Core P#0 Core P#1 Core P#2 Core P#3 Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#2 PU P#4 PU P#6 PU P#1 PU P#3 PU P#5 PU P#7
PU P#8 PU P#10 PU P#12 PU P#14 PU P#9 PU P#11 PU P#13 PU P#15

My Linux Server

Machine (2G toaI

NUMANode P#0 (12GB)

NUMANode P#1 (12GB)

Package P#1

L3 (8192KB)

Package P#0

L3 (8192KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1d (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

L1i (32KB)

Core P#0

Core P#1

Core P#2

Core P#3

PU P#0

PU P#2

PU P#4

PU P#6

PU P#8

PU P#10

PU P#12

PU P#14

Core P#0

Core P#1

Core P#2

Core P#3

PU P#1

PU P#3

PU P#5

PU P#7

PU P#9

PU P#11

PU P#13

PU P#15

Two processors (one per “socket”)

My Linux Server

Machine (24GB total)

NUMANode P#0 (12GB)

NUMANode P#1 (12GB)

Package P#1

L3 (8192KB)

Package P#0

L3 (8192KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)

f Core P#0 Core P#1

Core P#2

Core P#3

PU P#0 PU P#2

PU P#4

PU P#6

PU P#8 PU P#10

PU P#12

PU P#14

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#1 PU P#3 PU P#5 PU P#7
PU P#9 PU P#11 PU P#13 PU P#15

4 cores per processor
(oris it 8?7 stay tuned)

"
My Linux Server

Machine (24GB total)

NUMANode P#0 (12GB)

NUMANode P#1 (12GB)

Package P#1

Package P#0

{13 (8192KB L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
PRI Vo
", L1d (32KB) i L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)
Core P#0 Core P#1 Core P#2 Core P#3 Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#2 PU P#4 PU P#6 PU P#1 PU P#3 PU P#5 PU P#7
PU P#8 PU P#10 PU P#12 PU P#14 PU P#9 PU P#11 PU P#13 PU P#15

Shared L3 cache

Private L2 and L1 caches

(separate L1 data and instruction caches)

" A
Private Caches

® The main problem with private caches is
that of memory consistency

® Memory consistency is jeopardized by
having multiple caches
P1 and P2 both have a cached copy of a data
item
P1 writes to it, possibly write-through to
memory
At this point P2 owns a stale copy
® \When designing a multi-processor system,
one must ensure that this cannot happen

By defining protocols for cache coherence

Snoopy Cache-Coherence

State

Address
// Data PO

$ bus snoop $

memory bus

memory op from Pn
Mem yop Mem

® The memory bus is a broadcast medium
m Caches contain information on which addresses they store
m Cache Controller “snoops” all transactions on the bus

A transaction is a relevant transaction if it involves a cache block
currently contained in this cache

Take action to ensure coherence
= invalidate, update, or supply value

®m This is the kind of thing hapenning, for instance, in the Intel i7
processor (with many bells and whistles)

Limits of Snoopy Coherence

MEM

° |MEM

1.28 GB/s o0
cache cache
25.6 GB/s
PROC PROC

Assume:
4 GHz processor
=> 16 GB/s inst BW per processor (32-bit)

=> 9.6 GB/s data BW at 30% load-store of 8-
byte elements

Suppose 98% inst hit rate and 90% data hit
rate

=> 320 MB/s inst BW per processor
=> 960 MB/s data BW per processor
=> 1.28 GB/s combined BW

Assuming 10 GB/s bus bandwidth
8 processors will saturate the bus

" J
Directory-based Coherence

® |[dea: Implement a “directory” that keeps track of
where each copy of a data item is stored

® The directory acts as a filter

processors must ask permission for loading data from
memory to cache

when an entry is changed the directory either update or
invalidate cached copies

® Eliminates the overhead of broadcasting/
snooping, thus bandwidth consumption is
reduced

m But is slower in terms of latency

m Used to scale up to numbers of processors that
would saturate the memory bus

"
Example machine
m SGI Altix UV

m 2 560 cores
m 16TB of Shared Memory

m Uses a mixture of snoopy and
directory-based coherence

® Global address space is
possible for multiple such
nodes connected over a
switch...

m Costs a lot of money!

But then you don't have to
take 1CS632) |

" A
Conclusion

m | ocality is important due to caches and is thus a
constant concern for performance

m Compilers are not great at dealing with it
m Bottom-line: locality makes the programmer’s life
difficult but has high payoff if done right
A lot of algorithmic and implementation complexity/difficulty
® This leads to a lot of interesting research on locality
Issues

Awesome if you're a computer science graduate student /
researcher in needs of a research topic

Not so great if you're an engineer and just want some code
to go fast

m | et’'s look at Homework Assignment #12... (last, and
short, one!)

