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Semaphores
 We have seen 

 Locks for mutual exclusion 
 Condition Variables for synchronization 

 Semaphores are unified signaling mechanisms for 
both mutual exclusion and synchronization 

 Removes the need for counters,    
and additional boolean variables 

 History 
 Proposed in 1968 by Dijkstra 
 Inspired by railroad semaphores:  

 Up/Down, Red/Green



Not more powerful!
 Everything you can do with locks+condvars you can 

do with semaphores, and vice-versa 
 Sometimes the code looks much cleaner with one 

option than the other (we’ll see examples) 
 You will see both options used in practice 

 Depends on projects, people’s preferences, languages, 
etc. 

 Some people are very opinionated about it 
 Some students after taking this course say they only like 

one of the two (Semaphores are strangely attractive to 
some) 

 Once you truly understand concurrency, switching 
back and forth between the two options is really easy



Semaphore Operations
 A semaphore is an integer variable that is never < 0 
 It can be initialized to any >=0 integer value 
 The semaphore provides two atomic operations 
 The P operation 

 P: from Dutch “proberen”, “to test” 
 Waits for the variable to be > 0 and then decrements the 

semaphore by 1 
 The V operation 

 V: from Dutch “verhogen”, “to increment” 
 Increments the semaphore by 1 

 Can be implemented from scratch using atomic hardware 
instructions 

 Let’s live code a Semaphore class in Java right now…



Types of Semaphores

 Binary Semaphore: 
 Takes only values 0 and 1 

 Either enforced by the implementation with checks, 
or implicitly by initializing it to 0 and always calling P() 
after V() 

 Can be used for mutual exclusion  
 Can be used for signaling 

 Counting Semaphores: 
 Takes any non-negative value 
 Typically used to count resources and block 

resource produces and consumers



Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore 
(which I call “mutex” to remember it’s about 
mutual exclusion) is as simple as with a lock

semaphore_t mutex = 1; 
int shared_variable; 
void worker() { 
  while(1) { 
    P(mutex); 
    shared_variable++; 
    V(mutex); 
  } 
}



Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore 
(which I call “mutex” to remember it’s about 
mutual exclusion) is as simple as with a lock

Main difference with locks:  

 A call to unlock() on an 
unlocked lock does nothing 

 but you shouldn’t really do 
it as it a bit incoherent 

 A call to V() always increments 
the semaphore by one 

 so calling V() extra times is 
most likely a bug

semaphore_t mutex = 1; 
int shared_variable; 
void worker() { 
  while(1) { 
    P(mutex); 
    shared_variable++; 
    V(mutex); 
  } 
}



Signaling Semaphores
 Another use of binary semaphore is to signal some event 

 A thread waits for an event by calling P 
 A thread signals the event by calling V 

 Example: a “barrier” between two threads

. . . 

. . . 
V(ready1); 
P(ready2); 
. . . 
. . .

Thread #1

. . . 

. . . 
V(ready2); 
P(ready1); 
. . . 
. . .

Thread #2

semaphore ready1 = 0; 
semaphore ready2 = 0;

Global Variables



Comparing with locks/condvars

 Semaphores encapsulate the “counting variable”, thus shorter code 
 Generalizing to >2 threads requires an array of semaphores… 

 Doing “two things at once” is great? or is it confusing?

. . . 
V(ready1); 
P(ready2); 
. . . 

. . . 
V(ready2); 
P(ready1); 
. . .

semaphore ready1 = 0; 
semaphore ready2 = 0;

int  x =0; 
cond_t cond; 
lock_t mutex;

. . . 
lock(mutex); 
x++; 
if (x < 2) { 
    wait(cond, mutex); 
} else { 
    signal(cond); 
} 
unlock(mutex); 
. . .

semaphores
locks and 
cond vars



Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets 

flag to zero before doing something



Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets 

flag to zero before doing something

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

int flag; 
semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

In a while loop to avoid 
spurious wakeups!



Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets 

flag to zero before doing something

Equivalent to a wait() on 
condition variable 
  - release the mutex 
  - wait 
  - reacquire the mutex

Thread #1

Thread #2

im
portant. . . 

P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

int flag; 
semaphore_t mutex = 1; 
semaphore_t cond = 0;



Comparing with locks/condvars

Thread #1
Thread #2

. . . 
lock(mutex); 
while (flag != 0) { 
  wait(cond, mutex);
} 
<do something>  
unlock(mutex); 
. . .

. . . 
lock(mutex); 
flag--; 
if (flag == 0) 
  signal(cond); 
unlock(mutex); 
. . .

int flag; 
lock_t mutex; 
cond_t cond;

Thread #1
Thread #2

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

int flag; 
semaphore_t mutex = 1; 
semaphore_t cond = 0;



. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

One possible interleaved execution:

A B

mutex cond

B: P(mutex)

B: V(mutex)

A: P(mutex) 

flag = 1

flag =0

B: P(cond)

A: V(cond)

B: P(mutex)
B: blocked

A: V(mutex)

B: do something
B: V(mutex)

[B: P(mutex)

B: unblocked



Can we optimize this?

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

 Can we remove some calls to P() and V()? 
 Consider the following line of reasoning: 

 The flag is, say, = 1 
 Thread #2 shows up first, does P(mutex)/

V(mutex), then P(cond), and blocks, as it should 
 Thread #1 shows up, P(mutex), sets the flag to 

0. It then does V(cond), as it should 
 Thread #1 then does V(mutex). This is because 

Thread #2 will need to enter the critical section 
after waking up from P(cond) 

 So we have the following: 
 Thread #1 is in the critical section 
 It wakes up Thread #2, which should then 

enter the critical section right away 
 Optimization: Don’t call V(mutex) on Thread #1 

and don’t call P(mutex) on Thread #2 
 Intuitive explanation: Thread #1 allows Thread #2 

to “continue” in the critical section 
 This is called “passing the baton”



Passing the Baton

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  // receive “privileges” 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
  // transfer 

“privileges” 
else  
  V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the 
critical section after waking up, and A is done with the critical section, then 
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!



Passing the Baton

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  // receive “privileges” 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
  // transfer 

“privileges” 
else  
  V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the 
critical section after waking up, and A is done with the critical section, then 
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

You can see why some find 

semaphores powerful but confusing



Split Binary Semaphores
 A typical usage of binary semaphores is to do 

mutual exclusion and signaling at the same time 
 Consider a specific Producer/Consumer problem 

 We have an arbitrary number of producers 
 We have an arbitrary number of consumers 
 We have a buffer that can contains a single element, 

consumed by consumers and produced by producers 
 Consumers must be delayed while the buffer is empty 
 Producers must be delayed while the buffer is full 

 This can be easily implemented with 2 binary 
semaphores



Single Buffer Prod/Cons

void producer() { 
  while(true) { 
    P(empty); 
    buffer = <some value>; 
    V(full); 
  } 
}

semaphore_t empty = 1; 
semaphore_t full = 0;

void consumer() { 
  while(true) { 
    P(full); 
    consume(buffer); 
    V(empty); 
  } 
}



Single Buffer Prod/Cons

void producer() { 
  while(true) { 
    P(empty); 
    buffer = <some value>; 
    V(full); 
  } 
}

semaphore_t empty = 1; 
semaphore_t full = 0;

void consumer() { 
  while(true) { 
    P(full); 
    consume(buffer); 
    V(empty); 
  } 
}

 There is a simple “ping-pong” between the full and the empty 
semaphores 

 0 ≤ full + empty ≤ 1   (called a “split binary semaphore” effect) 
 We get mutual exclusion “for free” 
 The above is called split binary semaphores



Split Binary Semaphores

 Semaphores are initialized to (X=0,Y=1) 
 They alternate between (X=0,Y=1) and (X=1,Y=0) 
 Example: Starting with (X=0,Y=1) 

 Thread #1 cannot get to statement <S> 
 Thread #2 sets Y to 0 
 Thread #2 executes statement <T> 
 Thread #2 sets X to 1 
 We now have (X=1,Y=0) 
 Thread #2 cannot get to statement <T> 
 Thread #1 execute statement <S> 
 ...

Thread #1: while (true) { P(X);  <S>;  V(Y); } 
Thread #2: while (true) { P(Y);  <T>;  V(X); }



Split Binary Semaphores
 This is the kind of “hand off” we had discussed 

when trying to implement producer/consumer 
only with locks 

 With locks, I mentioned it was error prone 
 Therefore, this is error-prone too: a code with 

tons of P() and V() hand-offs on many different 
semaphores will be very hard to understand/
debug/maintain 
 Giving semaphores good names is paramount 

 But for simple cases it’s very readable and elegant 
 And we try to keep cases simple with concurrency, 

since going “fancy” is difficult regardless



General (non-binary) Semaphores

Semaphores that take values higher than 1 are 
typically used to control access to a limited 
number of resources 

 In the previous example we controlled access to 
a single resource, i.e., one buffer slot 

The value of the semaphore indicates the 
number of free resources, from 0 to N 

Let’s look at the “bounded buffer” producer/
consumer problem 

We already did this with condition variables, but 
we’ll see now that with semaphores it’s a bit 
easier



Bounded Buffer Prod/Cons

 Problem statement: 
 Arbitrary numbers of producers and consumers 
 The buffer can only store N elements 
 As we did before, our buffer will be a queue 

 In our split binary semaphore example, 
mutual exclusion was enforced implicitly with 
the full/empty semaphores 

 With general semaphores, we need an extra 
semaphore for mutual exclusion 

 Let’s look at the code



One attempt

void producer() { 
  while(true) { 
    P(mutex);  
    P(freeSlots); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

void consumer() { 
  while(true) { 
    P(mutex); 
    P(occupiedSlots) 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?  (poll)

semaphore_t freeSlots = N; 
semaphore_t occupiedSlots = 0; 
semaphore_t mutex = 1;



Nope: Deadlock
void producer() { 
  while(true) { 
    P(mutex);  
    P(freeSlots); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

void consumer() { 
  while(true) { 
    P(mutex); 
    P(occupiedSlots) 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?    NO: DEADLOCK 
 The buffer is full 
 Producer acquires binary semaphore mutex 
 Producer blocks trying to acquire semaphore freeSlots 

because the buffer is full 
 All consumers block trying to acquire binary semaphore mutex!



Swapping the calls to P()

void producer() { 
  while(true) { 
    P(freeSlots); 
    P(mutex); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

semaphore_t freeSlots = n; 
semaphore_t occupiedSlots = 0; 
semaphore_t mutex = 1;

void consumer() { 
  while(true) { 
    P(occupiedSlots) 
    P(mutex); 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?  (poll)



Swapping the calls to P()
void producer() { 
  while(true) { 
    P(freeSlots); 
    P(mutex); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

void consumer() { 
  while(true) { 
    P(occupiedSlots) 
    P(mutex); 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?   YES 
 Can be formally proven 
 But you can easily see that we removed the 

deadlock problem since now a thread first checks 
if it can do work before getting the mutex



Swapping the Calls to V()?
void producer() { 
  while(true) { 
    P(freeSlots);  
    P(mutex); 
    <add element to queue> 
    V(occupiedSlots); 
    V(mutex);
  } 
}

void consumer() { 
  while(true) { 
    P(occupiedSlots); 
    P(mutex) 
    <remove element from queue> 
    V(freeSlots); 
    V(mutex);
  } 
}

 We can also think of swapping the V() calls 
 Does this work?  (poll)



Swapping the Calls to V()?
void producer() { 
  while(true) { 
    P(freeSlots);  
    P(mutex); 
    <add element to queue> 
    V(occupiedSlots); 
    V(mutex);
  } 
}

void consumer() { 
  while(true) { 
    P(occupiedSlots); 
    P(mutex) 
    <remove element from queue> 
    V(freeSlots); 
    V(mutex);
  } 
}

 We can also think of swapping the V() calls 
 Does this work?   YES 
 It doesn’t matter in which order the two things a thread is waiting for are 

signaled given that both are needed (the V() calls can be in any order) 
 And besides, blocking threads just get back to the ready queue and 

there could be other threads ahead of them anyway



Reader/Writer
 Another classical concurrency model is the 

reader/writer problem 
 We have two kinds of processes: 

 Readers: read records from a database 
 Writers: read and write records from a database 

 Selective mutual exclusion 
 Concurrent readers are allowed 
 A writer should access the database in mutual 

exclusion with all other writers and readers 
 Typical of database applications 

 e.g., a Web/database server with one thread per 
transaction



A Naive Solution

void reader() { 
  while(true) { 
    P(rw); 
    <read from the DB> 
    V(rw); 
  } 
}

semaphore_t rw = 1;

void writer() { 
  while(true) { 
    P(rw); 
    <write to the DB> 
    V(rw); 
  } 
}

 It this a good reader-writer solution? (poll)



A Naive Solution

void reader() { 
  while(true) { 
    P(rw); 
    <read from the DB> 
    V(rw); 
  } 
}

semaphore_t rw = 1;

void writer() { 
  while(true) { 
    P(rw); 
    <write to the DB> 
    V(rw); 
  } 
}

 Not a good solution: it works but implements too strict a 
constraint as there can be no concurrent database reads  

 Loss of throughput/performance because concurrent 
reads should be allowed 

 In many applications, there are few writers and many readers



Reader-Preferred Solution

 One simple fix is to allow multiple readers 
in a “greedy” fashion: 
 There is still a rw semaphore 
 While a reader is reading, other readers 

should be allowed in 
 Therefore we should have a variable, nr, 

keeping track of the current number of readers 
 That variable is used / updated by all readers, 

and should be protected by a mutual exclusion 
semaphore 

 Let’s look at the code



Reader-Preferred Solution
void reader() { 
  while(true) { 

    P(mutex); 
      if (nr == 0)  P(rw);  // I am first 
      nr++; 
    V(mutex); 

    <read from the DB> 

    P(mutex); 
    nr--; 
    if (nr == 0) V(rw);    // I am last 
    V(mutex); 
  } 
}

semaphore_t mutex = 1; 
semaphore_t rw = 1; 
int nr = 0;

void writer() { 
  while(true) { 
    P(rw); 
    <write to the DB> 
    V(rw); 
  } 
}

Anybody sees the 
problem with this?



Reader-Preferred Solution
 The problem of the reader-preferred solution is 

that it is too reader-preferred 
 There could be starvation of the writers 

 If there is always a reader able to read, the rw 
semaphore will be monopolized by readers forever 

 Turns out it’s very difficult to modify the code to 
make it fair between readers and writers 
 There is a classic solution that uses synchronization 

and the “passing the baton” technique 
 Based on a invariant condition and subtle signaling 
 You can look at it on your own if interested 

 Let’s instead look at a simple but pretty good 
solution



Maximum number of readers
 Let us define a maximum number of allowed concurrent 

readers, which simplifies the problem 
 And most likely makes sense for most applications 

 Let’s say we allow at most N concurrent active readers 
 We create a “resource” semaphore with initial value N 
 Each reader needs to acquire one resource to be able to 

read 
 Therefore, N concurrent readers are allowed 

 Each writer needs to acquire N resources to be able to 
write 

 Therefore, only one writer can be executing at a time and 
no readers can be executing concurrently 

 Let’s look at the code



Reader/Writer

void reader() { 
  while(true) { 
    P(sem); 
    <read from the DB> 
    V(sem); 
  } 
}

semaphore_t  sem = N;

void writer() { 
  while(true) { 
    for (i=0; i<N; i++) 
        P(sem); 
    <write to the DB> 
    for (i=0; i<N; i++)  
        V(sem); 
  } 
}

Does this work? (consider multiple writers) (poll)



Reader/Writer
void writer() { 
  while(true) { 
    for (i=0; i<N; i++) 
      P(sem); 
    <write to the DB> 
    for (i=0; i<N; i++)  
      V(sem); 
  } 
}

 Deadlock! 
 One could have two writers each start 

acquiring resources concurrently 
 For instance 

 Writer #1 holds 2 resource 
 Writer #2 holds N-2 resources 

 They’re both blocked forever 
 Solution: Don’t allow two writers to 

execute the for loop of P() calls 
concurrently 

 This can easily be done with mutual 
exclusion 

 We need another semaphore!



“OK” Reader/Writer Solution

void reader() { 
  while(true) { 
    P(sem); 
    <read from the DB> 
    V(sem); 
  } 
}

semaphore_t  sem = N; 
semaphore_t  wmutex = 1;

void writer() { 
  while(true) { 
    P(wmutex); 
    for (i=0; i<N; i++) 
        P(sem); 
    V(wmutex); 
    <write to the DB> 
    for (i=0; i<N; i++)  
        V(sem); 
  } 
}



Reader-Writer Lock
 You may remember that I mentioned reader-writer locks 
 This is a special kind of lock designed especially for the 

reader-writer problem 
 java.util.concurrent.locks.ReentrantReadWriteLock

ReentrantReadWriteLock rwl =  
new ReentrantReadWriteLock(); 

. . . 
rwl.readLock().lock(); 
. . .  
rwl.readLock().unlock(); 
. . . 
rwl.writeLock().lock(); 
. . .  
rwl.writeLock().unlock(); 
. . . 



java.util.concurrent Semaphore

 There is a 
java.util.concurrent.Semaphore 

 It simply implements a semaphore 
 P() is called acquire() 
 V() is called release() 

 It works exactly like you think it does



Pros/Cons for Semaphores
 Good 

A single mechanism for many things 
 mutual exclusion, resource sharing, signaling/

blocking 
General enough to solve any concurrency/

synchronization problem 
Sometimes surprisingly elegant/short programs 

 Bad 
The fact that a single mechanism is used for multiple 

things can make a program very difficult to understand 
Not very modular: e.g., the use of a semaphore in a 

thread depends on its use in another thread with 
dreaded “hand-off” behavior that may have been 
implemented



Conclusion

 As this point we’ve seen the two main low-
level abstractions for thread synchronization 
 Locks + condition variables 
 Semaphores 

 Next up, we look at famous concurrency 
problems 

 But first, let’s look at Assignment #7…


