
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Semaphores

Semaphores
 We have seen

 Locks for mutual exclusion
 Condition Variables for synchronization

 Semaphores are unified signaling mechanisms for
both mutual exclusion and synchronization

 Removes the need for counters,
and additional boolean variables

 History
 Proposed in 1968 by Dijkstra
 Inspired by railroad semaphores:

 Up/Down, Red/Green

Not more powerful!
 Everything you can do with locks+condvars you can

do with semaphores, and vice-versa
 Sometimes the code looks much cleaner with one

option than the other (we’ll see examples)
 You will see both options used in practice

 Depends on projects, people’s preferences, languages,
etc.

 Some people are very opinionated about it
 Some students after taking this course say they only like

one of the two (Semaphores are strangely attractive to
some)

 Once you truly understand concurrency, switching
back and forth between the two options is really easy

Semaphore Operations
 A semaphore is an integer variable that is never < 0
 It can be initialized to any >=0 integer value
 The semaphore provides two atomic operations
 The P operation

 P: from Dutch “proberen”, “to test”
 Waits for the variable to be > 0 and then decrements the

semaphore by 1
 The V operation

 V: from Dutch “verhogen”, “to increment”
 Increments the semaphore by 1

 Can be implemented from scratch using atomic hardware
instructions

 Let’s live code a Semaphore class in Java right now…

Types of Semaphores

 Binary Semaphore:
 Takes only values 0 and 1

 Either enforced by the implementation with checks,
or implicitly by initializing it to 0 and always calling P()
after V()

 Can be used for mutual exclusion
 Can be used for signaling

 Counting Semaphores:
 Takes any non-negative value
 Typically used to count resources and block

resource produces and consumers

Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore
(which I call “mutex” to remember it’s about
mutual exclusion) is as simple as with a lock

semaphore_t mutex = 1;
int shared_variable;
void worker() {
 while(1) {
 P(mutex);
 shared_variable++;
 V(mutex);
 }
}

Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore
(which I call “mutex” to remember it’s about
mutual exclusion) is as simple as with a lock

Main difference with locks:

 A call to unlock() on an
unlocked lock does nothing

 but you shouldn’t really do
it as it a bit incoherent

 A call to V() always increments
the semaphore by one

 so calling V() extra times is
most likely a bug

semaphore_t mutex = 1;
int shared_variable;
void worker() {
 while(1) {
 P(mutex);
 shared_variable++;
 V(mutex);
 }
}

Signaling Semaphores
 Another use of binary semaphore is to signal some event

 A thread waits for an event by calling P
 A thread signals the event by calling V

 Example: a “barrier” between two threads

. . .

. . .
V(ready1);
P(ready2);
. . .
. . .

Thread #1

. . .

. . .
V(ready2);
P(ready1);
. . .
. . .

Thread #2

semaphore ready1 = 0;
semaphore ready2 = 0;

Global Variables

Comparing with locks/condvars

 Semaphores encapsulate the “counting variable”, thus shorter code
 Generalizing to >2 threads requires an array of semaphores…

 Doing “two things at once” is great? or is it confusing?

. . .
V(ready1);
P(ready2);
. . .

. . .
V(ready2);
P(ready1);
. . .

semaphore ready1 = 0;
semaphore ready2 = 0;

int x =0;
cond_t cond;
lock_t mutex;

. . .
lock(mutex);
x++;
if (x < 2) {
 wait(cond, mutex);
} else {
 signal(cond);
}
unlock(mutex);
. . .

semaphores
locks and
cond vars

Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets

flag to zero before doing something

Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets

flag to zero before doing something

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

int flag;
semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

In a while loop to avoid
spurious wakeups!

Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets

flag to zero before doing something

Equivalent to a wait() on
condition variable
 - release the mutex
 - wait
 - reacquire the mutex

Thread #1

Thread #2

im
portant. . .

P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

int flag;
semaphore_t mutex = 1;
semaphore_t cond = 0;

Comparing with locks/condvars

Thread #1
Thread #2

. . .
lock(mutex);
while (flag != 0) {
 wait(cond, mutex);
}
<do something>
unlock(mutex);
. . .

. . .
lock(mutex);
flag--;
if (flag == 0)
 signal(cond);
unlock(mutex);
. . .

int flag;
lock_t mutex;
cond_t cond;

Thread #1
Thread #2

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

int flag;
semaphore_t mutex = 1;
semaphore_t cond = 0;

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

One possible interleaved execution:

A B

mutex cond

B: P(mutex)

B: V(mutex)

A: P(mutex)

flag = 1

flag =0

B: P(cond)

A: V(cond)

B: P(mutex)
B: blocked

A: V(mutex)

B: do something
B: V(mutex)

[B: P(mutex)

B: unblocked

Can we optimize this?

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

 Can we remove some calls to P() and V()?
 Consider the following line of reasoning:

 The flag is, say, = 1
 Thread #2 shows up first, does P(mutex)/

V(mutex), then P(cond), and blocks, as it should
 Thread #1 shows up, P(mutex), sets the flag to

0. It then does V(cond), as it should
 Thread #1 then does V(mutex). This is because

Thread #2 will need to enter the critical section
after waking up from P(cond)

 So we have the following:
 Thread #1 is in the critical section
 It wakes up Thread #2, which should then

enter the critical section right away
 Optimization: Don’t call V(mutex) on Thread #1

and don’t call P(mutex) on Thread #2
 Intuitive explanation: Thread #1 allows Thread #2

to “continue” in the critical section
 This is called “passing the baton”

Passing the Baton

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 // receive “privileges”
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
 // transfer

“privileges”
else
 V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the
critical section after waking up, and A is done with the critical section, then
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

Passing the Baton

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 // receive “privileges”
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
 // transfer

“privileges”
else
 V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the
critical section after waking up, and A is done with the critical section, then
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

You can see why some find

semaphores powerful but confusing

Split Binary Semaphores
 A typical usage of binary semaphores is to do

mutual exclusion and signaling at the same time
 Consider a specific Producer/Consumer problem

 We have an arbitrary number of producers
 We have an arbitrary number of consumers
 We have a buffer that can contains a single element,

consumed by consumers and produced by producers
 Consumers must be delayed while the buffer is empty
 Producers must be delayed while the buffer is full

 This can be easily implemented with 2 binary
semaphores

Single Buffer Prod/Cons

void producer() {
 while(true) {
 P(empty);
 buffer = <some value>;
 V(full);
 }
}

semaphore_t empty = 1;
semaphore_t full = 0;

void consumer() {
 while(true) {
 P(full);
 consume(buffer);
 V(empty);
 }
}

Single Buffer Prod/Cons

void producer() {
 while(true) {
 P(empty);
 buffer = <some value>;
 V(full);
 }
}

semaphore_t empty = 1;
semaphore_t full = 0;

void consumer() {
 while(true) {
 P(full);
 consume(buffer);
 V(empty);
 }
}

 There is a simple “ping-pong” between the full and the empty
semaphores

 0 ≤ full + empty ≤ 1 (called a “split binary semaphore” effect)
 We get mutual exclusion “for free”
 The above is called split binary semaphores

Split Binary Semaphores

 Semaphores are initialized to (X=0,Y=1)
 They alternate between (X=0,Y=1) and (X=1,Y=0)
 Example: Starting with (X=0,Y=1)

 Thread #1 cannot get to statement <S>
 Thread #2 sets Y to 0
 Thread #2 executes statement <T>
 Thread #2 sets X to 1
 We now have (X=1,Y=0)
 Thread #2 cannot get to statement <T>
 Thread #1 execute statement <S>
 ...

Thread #1: while (true) { P(X); <S>; V(Y); }
Thread #2: while (true) { P(Y); <T>; V(X); }

Split Binary Semaphores
 This is the kind of “hand off” we had discussed

when trying to implement producer/consumer
only with locks

 With locks, I mentioned it was error prone
 Therefore, this is error-prone too: a code with

tons of P() and V() hand-offs on many different
semaphores will be very hard to understand/
debug/maintain
 Giving semaphores good names is paramount

 But for simple cases it’s very readable and elegant
 And we try to keep cases simple with concurrency,

since going “fancy” is difficult regardless

General (non-binary) Semaphores

Semaphores that take values higher than 1 are
typically used to control access to a limited
number of resources

 In the previous example we controlled access to
a single resource, i.e., one buffer slot

The value of the semaphore indicates the
number of free resources, from 0 to N

Let’s look at the “bounded buffer” producer/
consumer problem

We already did this with condition variables, but
we’ll see now that with semaphores it’s a bit
easier

Bounded Buffer Prod/Cons

 Problem statement:
 Arbitrary numbers of producers and consumers
 The buffer can only store N elements
 As we did before, our buffer will be a queue

 In our split binary semaphore example,
mutual exclusion was enforced implicitly with
the full/empty semaphores

 With general semaphores, we need an extra
semaphore for mutual exclusion

 Let’s look at the code

One attempt

void producer() {
 while(true) {
 P(mutex);
 P(freeSlots);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

void consumer() {
 while(true) {
 P(mutex);
 P(occupiedSlots)
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? (poll)

semaphore_t freeSlots = N;
semaphore_t occupiedSlots = 0;
semaphore_t mutex = 1;

Nope: Deadlock
void producer() {
 while(true) {
 P(mutex);
 P(freeSlots);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

void consumer() {
 while(true) {
 P(mutex);
 P(occupiedSlots)
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? NO: DEADLOCK
 The buffer is full
 Producer acquires binary semaphore mutex
 Producer blocks trying to acquire semaphore freeSlots

because the buffer is full
 All consumers block trying to acquire binary semaphore mutex!

Swapping the calls to P()

void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

semaphore_t freeSlots = n;
semaphore_t occupiedSlots = 0;
semaphore_t mutex = 1;

void consumer() {
 while(true) {
 P(occupiedSlots)
 P(mutex);
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? (poll)

Swapping the calls to P()
void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

void consumer() {
 while(true) {
 P(occupiedSlots)
 P(mutex);
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? YES
 Can be formally proven
 But you can easily see that we removed the

deadlock problem since now a thread first checks
if it can do work before getting the mutex

Swapping the Calls to V()?
void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(occupiedSlots);
 V(mutex);
 }
}

void consumer() {
 while(true) {
 P(occupiedSlots);
 P(mutex)
 <remove element from queue>
 V(freeSlots);
 V(mutex);
 }
}

 We can also think of swapping the V() calls
 Does this work? (poll)

Swapping the Calls to V()?
void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(occupiedSlots);
 V(mutex);
 }
}

void consumer() {
 while(true) {
 P(occupiedSlots);
 P(mutex)
 <remove element from queue>
 V(freeSlots);
 V(mutex);
 }
}

 We can also think of swapping the V() calls
 Does this work? YES
 It doesn’t matter in which order the two things a thread is waiting for are

signaled given that both are needed (the V() calls can be in any order)
 And besides, blocking threads just get back to the ready queue and

there could be other threads ahead of them anyway

Reader/Writer
 Another classical concurrency model is the

reader/writer problem
 We have two kinds of processes:

 Readers: read records from a database
 Writers: read and write records from a database

 Selective mutual exclusion
 Concurrent readers are allowed
 A writer should access the database in mutual

exclusion with all other writers and readers
 Typical of database applications

 e.g., a Web/database server with one thread per
transaction

A Naive Solution

void reader() {
 while(true) {
 P(rw);
 <read from the DB>
 V(rw);
 }
}

semaphore_t rw = 1;

void writer() {
 while(true) {
 P(rw);
 <write to the DB>
 V(rw);
 }
}

 It this a good reader-writer solution? (poll)

A Naive Solution

void reader() {
 while(true) {
 P(rw);
 <read from the DB>
 V(rw);
 }
}

semaphore_t rw = 1;

void writer() {
 while(true) {
 P(rw);
 <write to the DB>
 V(rw);
 }
}

 Not a good solution: it works but implements too strict a
constraint as there can be no concurrent database reads

 Loss of throughput/performance because concurrent
reads should be allowed

 In many applications, there are few writers and many readers

Reader-Preferred Solution

 One simple fix is to allow multiple readers
in a “greedy” fashion:
 There is still a rw semaphore
 While a reader is reading, other readers

should be allowed in
 Therefore we should have a variable, nr,

keeping track of the current number of readers
 That variable is used / updated by all readers,

and should be protected by a mutual exclusion
semaphore

 Let’s look at the code

Reader-Preferred Solution
void reader() {
 while(true) {

 P(mutex);
 if (nr == 0) P(rw); // I am first
 nr++;
 V(mutex);

 <read from the DB>

 P(mutex);
 nr--;
 if (nr == 0) V(rw); // I am last
 V(mutex);
 }
}

semaphore_t mutex = 1;
semaphore_t rw = 1;
int nr = 0;

void writer() {
 while(true) {
 P(rw);
 <write to the DB>
 V(rw);
 }
}

Anybody sees the
problem with this?

Reader-Preferred Solution
 The problem of the reader-preferred solution is

that it is too reader-preferred
 There could be starvation of the writers

 If there is always a reader able to read, the rw
semaphore will be monopolized by readers forever

 Turns out it’s very difficult to modify the code to
make it fair between readers and writers
 There is a classic solution that uses synchronization

and the “passing the baton” technique
 Based on a invariant condition and subtle signaling
 You can look at it on your own if interested

 Let’s instead look at a simple but pretty good
solution

Maximum number of readers
 Let us define a maximum number of allowed concurrent

readers, which simplifies the problem
 And most likely makes sense for most applications

 Let’s say we allow at most N concurrent active readers
 We create a “resource” semaphore with initial value N
 Each reader needs to acquire one resource to be able to

read
 Therefore, N concurrent readers are allowed

 Each writer needs to acquire N resources to be able to
write

 Therefore, only one writer can be executing at a time and
no readers can be executing concurrently

 Let’s look at the code

Reader/Writer

void reader() {
 while(true) {
 P(sem);
 <read from the DB>
 V(sem);
 }
}

semaphore_t sem = N;

void writer() {
 while(true) {
 for (i=0; i<N; i++)
 P(sem);
 <write to the DB>
 for (i=0; i<N; i++)
 V(sem);
 }
}

Does this work? (consider multiple writers) (poll)

Reader/Writer
void writer() {
 while(true) {
 for (i=0; i<N; i++)
 P(sem);
 <write to the DB>
 for (i=0; i<N; i++)
 V(sem);
 }
}

 Deadlock!
 One could have two writers each start

acquiring resources concurrently
 For instance

 Writer #1 holds 2 resource
 Writer #2 holds N-2 resources

 They’re both blocked forever
 Solution: Don’t allow two writers to

execute the for loop of P() calls
concurrently

 This can easily be done with mutual
exclusion

 We need another semaphore!

“OK” Reader/Writer Solution

void reader() {
 while(true) {
 P(sem);
 <read from the DB>
 V(sem);
 }
}

semaphore_t sem = N;
semaphore_t wmutex = 1;

void writer() {
 while(true) {
 P(wmutex);
 for (i=0; i<N; i++)
 P(sem);
 V(wmutex);
 <write to the DB>
 for (i=0; i<N; i++)
 V(sem);
 }
}

Reader-Writer Lock
 You may remember that I mentioned reader-writer locks
 This is a special kind of lock designed especially for the

reader-writer problem
 java.util.concurrent.locks.ReentrantReadWriteLock

ReentrantReadWriteLock rwl =
new ReentrantReadWriteLock();

. . .
rwl.readLock().lock();
. . .
rwl.readLock().unlock();
. . .
rwl.writeLock().lock();
. . .
rwl.writeLock().unlock();
. . .

java.util.concurrent Semaphore

 There is a
java.util.concurrent.Semaphore

 It simply implements a semaphore
 P() is called acquire()
 V() is called release()

 It works exactly like you think it does

Pros/Cons for Semaphores
 Good

A single mechanism for many things
 mutual exclusion, resource sharing, signaling/

blocking
General enough to solve any concurrency/

synchronization problem
Sometimes surprisingly elegant/short programs

 Bad
The fact that a single mechanism is used for multiple

things can make a program very difficult to understand
Not very modular: e.g., the use of a semaphore in a

thread depends on its use in another thread with
dreaded “hand-off” behavior that may have been
implemented

Conclusion

 As this point we’ve seen the two main low-
level abstractions for thread synchronization
 Locks + condition variables
 Semaphores

 Next up, we look at famous concurrency
problems

 But first, let’s look at Assignment #7…

