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Semaphores
 We have seen 

 Locks for mutual exclusion 
 Condition Variables for synchronization 

 Semaphores are unified signaling mechanisms for 
both mutual exclusion and synchronization 

 Removes the need for counters,	 	 	 	
and additional boolean variables 

 History 
 Proposed in 1968 by Dijkstra 
 Inspired by railroad semaphores:  

 Up/Down, Red/Green



Not more powerful!
 Everything you can do with locks+condvars you can 

do with semaphores, and vice-versa 
 Sometimes the code looks much cleaner with one 

option than the other (we’ll see examples) 
 You will see both options used in practice 

 Depends on projects, people’s preferences, languages, 
etc. 

 Some people are very opinionated about it 
 Some students after taking this course say they only like 

one of the two (Semaphores are strangely attractive to 
some) 

 Once you truly understand concurrency, switching 
back and forth between the two options is really easy



Semaphore Operations
 A semaphore is an integer variable that is never < 0 
 It can be initialized to any >=0 integer value 
 The semaphore provides two atomic operations 
 The P operation 

 P: from Dutch “proberen”, “to test” 
 Waits for the variable to be > 0 and then decrements the 

semaphore by 1 
 The V operation 

 V: from Dutch “verhogen”, “to increment” 
 Increments the semaphore by 1 

 Can be implemented from scratch using atomic hardware 
instructions 

 Let’s live code a Semaphore class in Java right now…



Types of Semaphores

 Binary Semaphore: 
 Takes only values 0 and 1 

 Either enforced by the implementation with checks, 
or implicitly by initializing it to 0 and always calling P() 
after V() 

 Can be used for mutual exclusion  
 Can be used for signaling 

 Counting Semaphores: 
 Takes any non-negative value 
 Typically used to count resources and block 

resource produces and consumers



Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore 
(which I call “mutex” to remember it’s about 
mutual exclusion) is as simple as with a lock

semaphore_t mutex = 1; 
int shared_variable; 
void worker() { 
  while(1) { 
    P(mutex); 
    shared_variable++; 
    V(mutex); 
  } 
}



Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore 
(which I call “mutex” to remember it’s about 
mutual exclusion) is as simple as with a lock

Main difference with locks:  

 A call to unlock() on an 
unlocked lock does nothing 

 but you shouldn’t really do 
it as it a bit incoherent 

 A call to V() always increments 
the semaphore by one 

 so calling V() extra times is 
most likely a bug

semaphore_t mutex = 1; 
int shared_variable; 
void worker() { 
  while(1) { 
    P(mutex); 
    shared_variable++; 
    V(mutex); 
  } 
}



Signaling Semaphores
 Another use of binary semaphore is to signal some event 

 A thread waits for an event by calling P 
 A thread signals the event by calling V 

 Example: a “barrier” between two threads

. . . 

. . . 
V(ready1); 
P(ready2); 
. . . 
. . .

Thread #1

. . . 

. . . 
V(ready2); 
P(ready1); 
. . . 
. . .

Thread #2

semaphore ready1 = 0; 
semaphore ready2 = 0;

Global Variables



Comparing with locks/condvars

 Semaphores encapsulate the “counting variable”, thus shorter code 
 Generalizing to >2 threads requires an array of semaphores… 

 Doing “two things at once” is great? or is it confusing?

. . . 
V(ready1); 
P(ready2); 
. . . 

. . . 
V(ready2); 
P(ready1); 
. . .

semaphore ready1 = 0; 
semaphore ready2 = 0;

int  x =0; 
cond_t cond; 
lock_t mutex;

. . . 
lock(mutex); 
x++; 
if (x < 2) { 
    wait(cond, mutex); 
} else { 
    signal(cond); 
} 
unlock(mutex); 
. . .

semaphores
locks and 
cond vars



Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets 

flag to zero before doing something



Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets 

flag to zero before doing something

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

int flag; 
semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

In a while loop to avoid 
spurious wakeups!



Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets 

flag to zero before doing something

Equivalent to a wait() on 
condition variable 
  - release the mutex 
  - wait 
  - reacquire the mutex

Thread #1

Thread #2

im
portant. . . 

P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

int flag; 
semaphore_t mutex = 1; 
semaphore_t cond = 0;



Comparing with locks/condvars

Thread #1
Thread #2

. . . 
lock(mutex); 
while (flag != 0) { 
  wait(cond, mutex);
} 
<do something>  
unlock(mutex); 
. . .

. . . 
lock(mutex); 
flag--; 
if (flag == 0) 
  signal(cond); 
unlock(mutex); 
. . .

int flag; 
lock_t mutex; 
cond_t cond;

Thread #1
Thread #2

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

int flag; 
semaphore_t mutex = 1; 
semaphore_t cond = 0;



. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

One possible interleaved execution:

A B

mutex cond

B: P(mutex)

B: V(mutex)

A: P(mutex) 

flag = 1

flag =0

B: P(cond)

A: V(cond)

B: P(mutex)
B: blocked

A: V(mutex)

B: do something
B: V(mutex)

[B: P(mutex)

B: unblocked



Can we optimize this?

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

 Can we remove some calls to P() and V()? 
 Consider the following line of reasoning: 

 The flag is, say, = 1 
 Thread #2 shows up first, does P(mutex)/

V(mutex), then P(cond), and blocks, as it should 
 Thread #1 shows up, P(mutex), sets the flag to 

0. It then does V(cond), as it should 
 Thread #1 then does V(mutex). This is because 

Thread #2 will need to enter the critical section 
after waking up from P(cond) 

 So we have the following: 
 Thread #1 is in the critical section 
 It wakes up Thread #2, which should then 

enter the critical section right away 
 Optimization: Don’t call V(mutex) on Thread #1 

and don’t call P(mutex) on Thread #2 
 Intuitive explanation: Thread #1 allows Thread #2 

to “continue” in the critical section 
 This is called “passing the baton”



Passing the Baton

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  // receive “privileges” 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
  // transfer 

“privileges” 
else  
  V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the 
critical section after waking up, and A is done with the critical section, then 
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!



Passing the Baton

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  P(mutex); 
} 
<do something>  
V(mutex); 

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

. . . 
P(mutex); 
while (flag != 0) { 
  V(mutex); 
  P(cond); 
  // receive “privileges” 
  P(mutex); 
} 
<do something>  
V(mutex); 
. . .

. . . 
P(mutex); 
flag--; 
if (flag == 0) 
  V(cond); 
  // transfer 

“privileges” 
else  
  V(mutex); 
. . .

semaphore_t mutex = 1; 
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the 
critical section after waking up, and A is done with the critical section, then 
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

You can see why some find 

semaphores powerful but confusing



Split Binary Semaphores
 A typical usage of binary semaphores is to do 

mutual exclusion and signaling at the same time 
 Consider a specific Producer/Consumer problem 

 We have an arbitrary number of producers 
 We have an arbitrary number of consumers 
 We have a buffer that can contains a single element, 

consumed by consumers and produced by producers 
 Consumers must be delayed while the buffer is empty 
 Producers must be delayed while the buffer is full 

 This can be easily implemented with 2 binary 
semaphores



Single Buffer Prod/Cons

void producer() { 
  while(true) { 
    P(empty); 
    buffer = <some value>; 
    V(full); 
  } 
}

semaphore_t empty = 1; 
semaphore_t full = 0;

void consumer() { 
  while(true) { 
    P(full); 
    consume(buffer); 
    V(empty); 
  } 
}



Single Buffer Prod/Cons

void producer() { 
  while(true) { 
    P(empty); 
    buffer = <some value>; 
    V(full); 
  } 
}

semaphore_t empty = 1; 
semaphore_t full = 0;

void consumer() { 
  while(true) { 
    P(full); 
    consume(buffer); 
    V(empty); 
  } 
}

 There is a simple “ping-pong” between the full and the empty 
semaphores 

 0 ≤ full + empty ≤ 1   (called a “split binary semaphore” effect) 
 We get mutual exclusion “for free” 
 The above is called split binary semaphores



Split Binary Semaphores

 Semaphores are initialized to (X=0,Y=1) 
 They alternate between (X=0,Y=1) and (X=1,Y=0) 
 Example: Starting with (X=0,Y=1) 

 Thread #1 cannot get to statement <S> 
 Thread #2 sets Y to 0 
 Thread #2 executes statement <T> 
 Thread #2 sets X to 1 
 We now have (X=1,Y=0) 
 Thread #2 cannot get to statement <T> 
 Thread #1 execute statement <S> 
 ...

Thread #1: while (true) { P(X);  <S>;  V(Y); } 
Thread #2: while (true) { P(Y);  <T>;  V(X); }



Split Binary Semaphores
 This is the kind of “hand off” we had discussed 

when trying to implement producer/consumer 
only with locks 

 With locks, I mentioned it was error prone 
 Therefore, this is error-prone too: a code with 

tons of P() and V() hand-offs on many different 
semaphores will be very hard to understand/
debug/maintain 
 Giving semaphores good names is paramount 

 But for simple cases it’s very readable and elegant 
 And we try to keep cases simple with concurrency, 

since going “fancy” is difficult regardless



General (non-binary) Semaphores

Semaphores that take values higher than 1 are 
typically used to control access to a limited 
number of resources 

 In the previous example we controlled access to 
a single resource, i.e., one buffer slot 

The value of the semaphore indicates the 
number of free resources, from 0 to N 

Let’s look at the “bounded buffer” producer/
consumer problem 

We already did this with condition variables, but 
we’ll see now that with semaphores it’s a bit 
easier



Bounded Buffer Prod/Cons

 Problem statement: 
 Arbitrary numbers of producers and consumers 
 The buffer can only store N elements 
 As we did before, our buffer will be a queue 

 In our split binary semaphore example, 
mutual exclusion was enforced implicitly with 
the full/empty semaphores 

 With general semaphores, we need an extra 
semaphore for mutual exclusion 

 Let’s look at the code



One attempt

void producer() { 
  while(true) { 
    P(mutex);  
    P(freeSlots); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

void consumer() { 
  while(true) { 
    P(mutex); 
    P(occupiedSlots) 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?  (poll)

semaphore_t freeSlots = N; 
semaphore_t occupiedSlots = 0; 
semaphore_t mutex = 1;



Nope: Deadlock
void producer() { 
  while(true) { 
    P(mutex);  
    P(freeSlots); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

void consumer() { 
  while(true) { 
    P(mutex); 
    P(occupiedSlots) 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?    NO: DEADLOCK 
 The buffer is full 
 Producer acquires binary semaphore mutex 
 Producer blocks trying to acquire semaphore freeSlots 

because the buffer is full 
 All consumers block trying to acquire binary semaphore mutex!



Swapping the calls to P()

void producer() { 
  while(true) { 
    P(freeSlots); 
    P(mutex); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

semaphore_t freeSlots = n; 
semaphore_t occupiedSlots = 0; 
semaphore_t mutex = 1;

void consumer() { 
  while(true) { 
    P(occupiedSlots) 
    P(mutex); 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?  (poll)



Swapping the calls to P()
void producer() { 
  while(true) { 
    P(freeSlots); 
    P(mutex); 
    <add element to queue> 
    V(mutex); 
    V(occupiedSlots); 
  } 
}

void consumer() { 
  while(true) { 
    P(occupiedSlots) 
    P(mutex); 
    <remove element from queue> 
    V(mutex); 
    V(freeSlots); 
  } 
}

 Does this work?   YES 
 Can be formally proven 
 But you can easily see that we removed the 

deadlock problem since now a thread first checks 
if it can do work before getting the mutex



Swapping the Calls to V()?
void producer() { 
  while(true) { 
    P(freeSlots);  
    P(mutex); 
    <add element to queue> 
    V(occupiedSlots); 
    V(mutex);
  } 
}

void consumer() { 
  while(true) { 
    P(occupiedSlots); 
    P(mutex) 
    <remove element from queue> 
    V(freeSlots); 
    V(mutex);
  } 
}

 We can also think of swapping the V() calls 
 Does this work?  (poll)



Swapping the Calls to V()?
void producer() { 
  while(true) { 
    P(freeSlots);  
    P(mutex); 
    <add element to queue> 
    V(occupiedSlots); 
    V(mutex);
  } 
}

void consumer() { 
  while(true) { 
    P(occupiedSlots); 
    P(mutex) 
    <remove element from queue> 
    V(freeSlots); 
    V(mutex);
  } 
}

 We can also think of swapping the V() calls 
 Does this work?   YES 
 It doesn’t matter in which order the two things a thread is waiting for are 

signaled given that both are needed (the V() calls can be in any order) 
 And besides, blocking threads just get back to the ready queue and 

there could be other threads ahead of them anyway



Reader/Writer
 Another classical concurrency model is the 

reader/writer problem 
 We have two kinds of processes: 

 Readers: read records from a database 
 Writers: read and write records from a database 

 Selective mutual exclusion 
 Concurrent readers are allowed 
 A writer should access the database in mutual 

exclusion with all other writers and readers 
 Typical of database applications 

 e.g., a Web/database server with one thread per 
transaction



A Naive Solution

void reader() { 
  while(true) { 
    P(rw); 
    <read from the DB> 
    V(rw); 
  } 
}

semaphore_t rw = 1;

void writer() { 
  while(true) { 
    P(rw); 
    <write to the DB> 
    V(rw); 
  } 
}

 It this a good reader-writer solution? (poll)



A Naive Solution

void reader() { 
  while(true) { 
    P(rw); 
    <read from the DB> 
    V(rw); 
  } 
}

semaphore_t rw = 1;

void writer() { 
  while(true) { 
    P(rw); 
    <write to the DB> 
    V(rw); 
  } 
}

 Not a good solution: it works but implements too strict a 
constraint as there can be no concurrent database reads  

 Loss of throughput/performance because concurrent 
reads should be allowed 

 In many applications, there are few writers and many readers



Reader-Preferred Solution

 One simple fix is to allow multiple readers 
in a “greedy” fashion: 
 There is still a rw semaphore 
 While a reader is reading, other readers 

should be allowed in 
 Therefore we should have a variable, nr, 

keeping track of the current number of readers 
 That variable is used / updated by all readers, 

and should be protected by a mutual exclusion 
semaphore 

 Let’s look at the code



Reader-Preferred Solution
void reader() { 
  while(true) { 

    P(mutex); 
      if (nr == 0)  P(rw);  // I am first 
      nr++; 
    V(mutex); 

    <read from the DB> 

    P(mutex); 
    nr--; 
    if (nr == 0) V(rw);    // I am last 
    V(mutex); 
  } 
}

semaphore_t mutex = 1; 
semaphore_t rw = 1; 
int nr = 0;

void writer() { 
  while(true) { 
    P(rw); 
    <write to the DB> 
    V(rw); 
  } 
}

Anybody sees the 
problem with this?



Reader-Preferred Solution
 The problem of the reader-preferred solution is 

that it is too reader-preferred 
 There could be starvation of the writers 

 If there is always a reader able to read, the rw 
semaphore will be monopolized by readers forever 

 Turns out it’s very difficult to modify the code to 
make it fair between readers and writers 
 There is a classic solution that uses synchronization 

and the “passing the baton” technique 
 Based on a invariant condition and subtle signaling 
 You can look at it on your own if interested 

 Let’s instead look at a simple but pretty good 
solution



Maximum number of readers
 Let us define a maximum number of allowed concurrent 

readers, which simplifies the problem 
 And most likely makes sense for most applications 

 Let’s say we allow at most N concurrent active readers 
 We create a “resource” semaphore with initial value N 
 Each reader needs to acquire one resource to be able to 

read 
 Therefore, N concurrent readers are allowed 

 Each writer needs to acquire N resources to be able to 
write 

 Therefore, only one writer can be executing at a time and 
no readers can be executing concurrently 

 Let’s look at the code



Reader/Writer

void reader() { 
  while(true) { 
    P(sem); 
    <read from the DB> 
    V(sem); 
  } 
}

semaphore_t  sem = N;

void writer() { 
  while(true) { 
    for (i=0; i<N; i++) 
        P(sem); 
    <write to the DB> 
    for (i=0; i<N; i++)  
        V(sem); 
  } 
}

Does this work? (consider multiple writers) (poll)



Reader/Writer
void writer() { 
  while(true) { 
    for (i=0; i<N; i++) 
      P(sem); 
    <write to the DB> 
    for (i=0; i<N; i++)  
      V(sem); 
  } 
}

 Deadlock! 
 One could have two writers each start 

acquiring resources concurrently 
 For instance 

 Writer #1 holds 2 resource 
 Writer #2 holds N-2 resources 

 They’re both blocked forever 
 Solution: Don’t allow two writers to 

execute the for loop of P() calls 
concurrently 

 This can easily be done with mutual 
exclusion 

 We need another semaphore!



“OK” Reader/Writer Solution

void reader() { 
  while(true) { 
    P(sem); 
    <read from the DB> 
    V(sem); 
  } 
}

semaphore_t  sem = N; 
semaphore_t  wmutex = 1;

void writer() { 
  while(true) { 
    P(wmutex); 
    for (i=0; i<N; i++) 
        P(sem); 
    V(wmutex); 
    <write to the DB> 
    for (i=0; i<N; i++)  
        V(sem); 
  } 
}



Reader-Writer Lock
 You may remember that I mentioned reader-writer locks 
 This is a special kind of lock designed especially for the 

reader-writer problem 
 java.util.concurrent.locks.ReentrantReadWriteLock

ReentrantReadWriteLock rwl =  
new ReentrantReadWriteLock(); 

. . . 
rwl.readLock().lock(); 
. . .  
rwl.readLock().unlock(); 
. . . 
rwl.writeLock().lock(); 
. . .  
rwl.writeLock().unlock(); 
. . . 



java.util.concurrent Semaphore

 There is a 
java.util.concurrent.Semaphore 

 It simply implements a semaphore 
 P() is called acquire() 
 V() is called release() 

 It works exactly like you think it does



Pros/Cons for Semaphores
 Good 

A single mechanism for many things 
 mutual exclusion, resource sharing, signaling/

blocking 
General enough to solve any concurrency/

synchronization problem 
Sometimes surprisingly elegant/short programs 

 Bad 
The fact that a single mechanism is used for multiple 

things can make a program very difficult to understand 
Not very modular: e.g., the use of a semaphore in a 

thread depends on its use in another thread with 
dreaded “hand-off” behavior that may have been 
implemented



Conclusion

 As this point we’ve seen the two main low-
level abstractions for thread synchronization 
 Locks + condition variables 
 Semaphores 

 Next up, we look at famous concurrency 
problems 

 But first, let’s look at Assignment #7…


