Semaphores

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" A
Semaphores

® \Ne have seen
® |_ocks for mutual exclusion
® Condition Variables for synchronization

®m Semaphores are unified signaling mechanisms for
both mutual exclusion and synchronization

B Removes the need for counters,
and additional boolean variables

m History
® Proposed in 1968 by Dijkstra

® |nspired by railroad semaphores:
®m Up/Down, Red/Green

" J——
Not more powerful!

m Everything you can do with locks+condvars you can
do with semaphores, and vice-versa

B Sometimes the code looks much cleaner with one
option than the other (we'll see examples)

B You will see both options used in practice

Depends on projects, people’s preferences, languages,
etc.
Some people are very opinionated about it

Some students after taking this course say they only like
one of the two (Semaphores are strangely attractive to
some)

® Once you truly understand concurrency, switching
back and forth between the two options is really easy

" J——
Semaphore Operations

® A semaphore is an integer variable that is never < 0
® [t can be initialized to any >=0 integer value

B The semaphore provides two atomic operations

®m The P operation

P: from Dutch “proberen”, “to test”

Waits for the variable to be > 0 and then decrements the
semaphore by 1

®m The V operation
V: from Dutch “verhogen”, “to increment”
Increments the semaphore by 1

® Can be implemented from scratch using atomic hardware
instructions

m | et’s live code a Semaphore class in Java right now...

" J
Types of Semaphores

m Binary Semaphore:

Takes only values 0 and 1

= Either enforced by the implementation with checks,
or implicitly by initializing it to 0 and always calling P()
after V()

Can be used for mutual exclusion
Can be used for signaling

m Counting Semaphores:
Takes any non-negative value

Typically used to count resources and block
resource produces and consumers

"
Critical Section with Semaphores

® Doing a critical section with a (binary) semaphore
(which | call “mutex” to remember it's about
mutual exclusion) is as simple as with a lock

semaphore_t mutex = 1;
int shared_variable;
void worker() {
while(1) {
P(mutex);
shared variable++;
V(mutex);

}
}

Critical Section with Semaphores

® Doing a critical section with a (binary) semaphore
(which | call “mutex” to remember it's about
mutual exclusion) is as simple as with a lock

semaphore_t mutex = 1;
int shared_variable;
void worker() {
while(1) {
P(mutex);
shared variable++;
V(mutex);

}
}

M(ain difference with locks: \

m A call to unlock() on an
unlocked lock does nothing
® but you shouldn'’t really do
it as it a bit incoherent

m A call to V() always increments
the semaphore by one
m so calling V() extra times is

\ most likely a bug J

"
Signaling Semaphores

® Another use of binary semaphore is to signal some event
A thread waits for an event by calling P
A thread signals the event by calling V

® Example: a “barrier” between two threads

Thread #1 Thread #2

Global Variables

V(ready1); V(ready?); semaphore ready1 = 0;
P(ready?2); P(ready1); semaphore ready2 = 0;

Comparing with locks/condvars

semaphores

semaphore ready1 = 0;
semaphore ready2 = 0;

V(ready1); V(ready2);
P(ready2); P(ready1);

int x =0;
cond_t cond;
lock t mutex;

locks and
cond vars

lock(mutex);
X++;
if (x <2){
wait(cond, mutex);
} else {
signal(cond);

}

unlock(mutex);

®m Semaphores encapsulate the “counting variable”, thus shorter code
®m Generalizing to >2 threads requires an array of semaphores...
® Doing “two things at once” is great? or is it confusing?

"
Signaling with Semaphores

®m Example: Thread #2 waits until Thread #1 sets
flag to zero before doing something

"
Signaling with Semaphores

®m Example: Thread #2 waits until Thread #1 sets
flag to zero before doing something

int flag;
semaphore_t mutex = 1;
semaphore _t cond = 0;

Thread #2
Thread #1 Do c
P(mutex);

. oa o H |=
P(mutex); W\?(Irlﬁu(tfcle?(?-. O In a while loop to avoid

. ’ ; |
flag--, P(cond); spurious wakeups!
if (flag == 0) P(mutex);

V(cond);)

V(mutex); <do something>

V(mutex);

"
Signaling with Semaphores

®m Example: Thread #2 waits until Thread #1 sets
flag to zero before doing something

int flag;
semaphore_t mutex = 1;
semaphore _t cond = 0;

Thread #2
Thread #1 L
P(mutex);
e hile (flag '= 0
P(mutex); Wv;rifutzg)- A Equivalent to a wait() on
flag--; ’ condition variable
¢ (fla, —= 0) P(cond); - release the mutex
g== P(mutex); - wait
V(cond);) - reacquire the mutex
V(mutex); <do something>

V(mutex);

"
Comparing with locks/condvars

int flag; int flag;
semaphore_t mutex = 1; lock t mutex;
semaphore t cond = 0; cond_t cond;
Thread #2 Thread #2
Thread #1 o Thread #1 .
P(mutex); lock(mutex);
o : — U hile (flag 1= 0) {
P(mutex); while (flag != 0) { lock(mutex); whit _
f|a(g__;) V(mutex); flag-(-;) }walt(cond, mutex);
if (flag == 0) P(cond); if (flag == 0) .
_ P(mutex): . _ <do something>
V(cond) e Sonal(cond) ypiogi(mutex):

<do something>
V(mutex);

V(mutex); }

" 4

semaphore _t mutex = 1;

semaphore_t cond = 0; iD.(r.nutex);
flag--;
if (flag == 0)
_ _ . V(cond);
One possible interleaved execution: e

mutex cond
O O
B: P(mutex) ‘ ‘
B: V(mutex) ‘ ‘
A: P(mutex) ‘ ‘
A: V(cond) ‘ ‘
B: P(cond) ‘ ‘
B: P(mutex) @ <@
B: blocked
A: V(mutex) ‘ ‘
B: unblocked
B: P(mutex) @) <@

B: do someth

ng
B: V(mutex)

flag = 1

flag =0

B

P(mutex);

while (flag = 0) {
V(mutex);
P(cond);
P(mutex);

¥

<do something>

V(mutex);

" S
Can we optimize this?

®m Can we remove some calls to P() and V()?

semaphore_t mutex = 1; ® Consider the following line of reasoning:
semaphore_t cond = 0; The flag is, say, = 1
Thread #2 shows up first, does P(mutex)/
Thread #2 V(mutex), then P(cond), and blocks, as it should
Thread #1 shows up, P(mutex), sets the flag to
Thread #1 o :
P(mutex): _(IJ_.hIt th;e;:l?hes chcond\i,(as tlt S)h?lil]d -
C. . I= rea en does V(mutex). This is because
P(mutex); while (flag != 0) { Thread #2 will need to enter the critical section
. V(mutex); after waking up from P(cond)
flag--; Siasril _
, __ (cond); So we have the following:
if (flag == 0) P(rutex): |
V(cond): (mutex); Thread #1 is in the critical section
V(mutex): } . It wakes up Thread #2, which should then
’ <do something> enter the critical section right away
V(mutex); Optimization: Don’t call V(mutex) on Thread #1

and don'’t call P(mutex) on Thread #2

® |ntuitive explanation: Thread #1 allows Thread #2
to “continue” in the critical section

® This is called “passing the baton”

"
Passing the Baton

semaphore_t mutex = 1; semaphore_t mutex = 1;
semaphore t cond = 0; semaphore t cond = 0;
Thread #2 Thread #2
Thread #1 P(tex) Thread #1 o
mutex);
. . C o P(mutex);
B while (lag =01 P(mutex); while (13g 1= 0) {
flag--; | V(mutex) flag--; V(mutex);.
if (flag == 0) P(cond); if (lag == 0) P(cond);
V(cond); } P(mutex), >//(tC°”df)? I receive “privileges”
: ransfer Rirautex):
V(mutex); <do something> “privileges” }' D
V(mutex); else <do something>

V(mutex); V(mutex);

If Alis in a critical section, and A needs to wake up B that should enter the
critical section after waking up, and A is done with the critical section, then
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

"
Passing the Baton

semaphore_t mutex = 1; semaphore_t mutex = 1;
semaphore_t cond = 0; semaphore_t cond = 0;
Thread #2 Thread #2
Thread #1 P(- Thread #1 .
mutex);

.. . C o P(mutex);
P(mutex); while (flag 1= 0) { P(mutex); w(hile (ﬂ;g 1= 0) {
T ’ V(mutex); flag--; V(mutex): .
f (flag == 0) Eg‘rfurlgzé)_ if (fla P(cond);

V(cond);) ’ receive “privileges’
V(mutex); e g, ;

<do something>
V(mutex);

If Ais in a critic lon, and A needs to wake up B that should enter the
critical section after waking up, and A is done with the critical section, then
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

"
Split Binary Semaphores

m A typical usage of binary semaphores is to do
mutual exclusion and signaling at the same time

m Consider a specific Producer/Consumer problem
We have an arbitrary number of producers
We have an arbitrary number of consumers

We have a buffer that can contains a single element,
consumed by consumers and produced by producers

Consumers must be delayed while the buffer is empty
Producers must be delayed while the buffer is full

® This can be easily implemented with 2 binary
semaphores

" S
Single Buffer Prod/Cons

semaphore_t empty = 1;
semaphore_t full = 0;

void producer() { void consumer() {
while(true) { while(true) {
P(empty); P (full);
buffer = <some value>; consume(buffer);
V(full); V(empty);
} }

} }

"
Single Buffer Prod/Cons

semaphore_t empty = 1;
semaphore_t full = 0;

void producer() { void consumer() {
while(true) { while(true) {
P(empty); P (full);
buffer = <some value>; consume(buffer);
V(full); V(empty);
} }
} }

® There is a simple “ping-pong” between the full and the empty
semaphores

0 <full + empty <1 (called a “split binary semaphore” effect)
® \We get mutual exclusion “for free”
® The above is called split binary semaphores

"
Split Binary Semaphores

Thread #1: while (true) { P(X); <S>; V(Y);}
Thread #2: while (true) { P(Y); <T>; V(X);}

®m Semaphores are initialized to (X=0,Y=1)
® They alternate between (X=0,Y=1) and (X=1,Y=0)
m Example: Starting with (X=0,Y=1)

Thread #1 cannot get to statement <S>

Thread #2 sets Yto O

Thread #2 executes statement <T>

Thread #2 sets X to 1

We now have (X=1,Y=0)

Thread #2 cannot get to statement <T>

Thread #1 execute statement <S>

"
Split Binary Semaphores

® This is the kind of “hand off” we had discussed
when trying to implement producer/consumer
only with locks

m \With locks, | mentioned it was error prone

B Therefore, this is error-prone too: a code with
tons of P() and V() hand-offs on many different
semaphores will be very hard to understand/
debug/maintain

Giving semaphores good names is paramount
m But for simple cases it's very readable and elegant

And we try to keep cases simple with concurrency,
since going “fancy” is difficult regardless

" J
General (non-binary) Semaphores

B Semaphores that take values higher than 1 are
typically used to control access to a limited
number of resources

In the previous example we controlled access to
a single resource, i.e., one buffer slot

® The value of the semaphore indicates the
number of free resources, from 0 to N

m| et's look at the “bounded buffer” producer/
consumer problem

We already did this with condition variables, but
we'll see now that with semaphores it's a bit
easier

" A
Bounded Buffer Prod/Cons

® Problem statement:
Arbitrary numbers of producers and consumers
The buffer can only store N elements
As we did before, our buffer will be a queue

® |n our split binary semaphore example,

mutual exclusion was enforced implicitly with
the full/lempty semaphores

m \With general semaphores, we need an extra
semaphore for mutual exclusion

m | et's look at the code

" JE
One attempt

semaphore _t freeSlots = N;
semaphore _t occupiedSlots = 0;
semaphore_t mutex = 1;

void producer() { void consumer() {
while(true) { while(true) {
P(mutex); P(mutex);
P(freeSlots); P(occupiedSlots)
<add element to queue> <remove element from queue>
V(mutex); V(mutex);
V(occupiedSlots); V(freeSlots);
} }
} }

® Does this work? (poll)

" J———
Nope: Deadlock

void producer() { void consumer() {
while(true) { while(true) {
P(mutex); P(mutex);
P(freeSlots); P(occupiedSlots)
<add element to queue> <remove element from queue>
V(mutex); V(mutex);
V(occupiedSlots); V(freeSlots);
} }
} }

® Does this work? NO: DEADLOCK
The buffer is full
Producer acquires binary semaphore mutex

Producer blocks trying to acquire semaphore freeSlots
because the buffer is full

All consumers block trying to acquire binary semaphore mutex!

"
Swapping the calls to P()

semaphore _t freeSlots = n;
semaphore _t occupiedSlots = 0;
semaphore t mutex = 1;

void producer() { void consumer() {
while(true) { while(true) {
P(freeSlots); P(occupiedSlots)
P(mutex); P(mutex);
<add element to queue> <remove element from queue>
V(mutex); V(mutex);
V(occupiedSlots); V(freeSlots);
} }
} }

® Does this work? (poll)

"
Swapping the calls to P()

void producer() { void consumer() {
while(true) { while(true) {
P(freeSlots); P(occupiedSlots)
P(mutex); P(mutex);
<add element to queue> <remove element from queue>
V(mutex); V(mutex);
V(occupiedSlots); V(freeSlots);
} }
} }

®m Does this work? YES

®m Can be formally proven

m But you can easily see that we removed the
deadlock problem since now a thread first checks
if it can do work before getting the mutex

"
Swapping the Calls to V()?

void producer() { void consumer() {
while(true) { while(true) {
P(freeSlots); P(occupiedSlots);
P(mutex); P(mutex)
<add element to queue> <remove element from queue>
V(occupiedSlots); V(freeSlots);
V(mutex); V(mutex);
} }
} }

® \We can also think of swapping the V() calls
® Does this work? (poll)

"
Swapping the Calls to V()?

void producer() { void consumer() {
while(true) { while(true) {
P(freeSlots); P(occupiedSlots);
P(mutex); P(mutex)
<add element to queue> <remove element from queue>
V(occupiedSlots); V(freeSlots);
V(mutex); V(mutex);
} }
} }

® \We can also think of swapping the V() calls

® Does this work? YES

® [t doesn’t matter in which order the two things a thread is waiting for are
signaled given that both are needed (the V() calls can be in any order)

And besides, blocking threads just get back to the ready queue and
there could be other threads ahead of them anyway

" A
Reader/WNriter

®m Another classical concurrency model is the
reader/writer problem

® \We have two kinds of processes:

Readers: read records from a database
Writers: read and write records from a database

B Selective mutual exclusion
Concurrent readers are allowed

A writer should access the database in mutual
exclusion with all other writers and readers

® Typical of database applications

e.g., a Web/database server with one thread per
transaction

" A
A Naive Solution

semaphore trw = 1;

void reader() { void writer() {
while(true) { while(true) {
P(rw); P(rw);
<read from the DB> <write to the DB>
V(rw); V(rw);
} }
} }

m |t this a good reader-writer solution? (poll)

" A
A Naive Solution

semaphore trw = 1;

void reader() { void writer() {
while(true) { while(true) {
P(rw); P(rw);
<read from the DB> <write to the DB>
V(rw); V(rw);
} }
} }

® Not a good solution: it works but implements too strict a
constraint as there can be no concurrent database reads

® | oss of throughput/performance because concurrent
reads should be allowed

In many applications, there are few writers and many readers

" A
Reader-Preferred Solution

® One simple fix is to allow multiple readers
In a “greedy” fashion:

There is still a rw semaphore

While a reader is reading, other readers
should be allowed in

Therefore we should have a variable, nr,
keeping track of the current number of readers

That variable is used / updated by all readers,
and should be protected by a mutual exclusion
semaphore

m Let's look at the code

Reader-Preferred Solution

void reader() {
while(true) { semaphore_t mutex = 1;
semaphore trw = 1;
P(mutex); int nr = 0;
if (nr==0) P(rw); // | am first
nr++;
V(mutex); void writer() {
while(true) {
<read from the DB> P(rw);
<write to the DB>
P(mutex); V(rw);
nr--;)
if (nr == 0) V(rw); // | am last i
V(mutex);
}} Anybody sees the

problem with this?

" A
Reader-Preferred Solution

® The problem of the reader-preferred solution is
that it is too reader-preferred

® There could be starvation of the writers

If there is always a reader able to read, the rw
semaphore will be monopolized by readers forever

® Turns out it’s very difficult to modify the code to
make it fair between readers and writers

There Is a classic solution that uses synchronization
and the “passing the baton” technique

Based on a invariant condition and subtle signaling
You can look at it on your own if interested

B | et's instead look at a simple but pretty good
solution

" A
Maximum number of readers

m | et us define a maximum number of allowed concurrent
readers, which simplifies the problem

And most likely makes sense for most applications
m [et's say we allow at most N concurrent active readers
® \We create a “resource” semaphore with initial value N

®m Each reader needs to acquire one resource to be able to
read
Therefore, N concurrent readers are allowed
®m Each writer needs to acquire N resources to be able to
write

Therefore, only one writer can be executing at a time and
no readers can be executing concurrently

m [et’s look at the code

" A
Reader/WNriter

semaphore _t sem = N;

void writer() {

void reader() { while(true) {
while(true) { for (i=0; i<N; i++)
P(sem); P(sem);
<read from the DB> <write to the DB>
V(sem); for (i=0; i<N; i++)
} V(sem);
} }
}

Does this work? (consider multiple writers) (poll)

" A
Reader/WNriter

®m Deadlock!

One could have two writers each start
acquiring resources concurrently

For instance
= Writer #1 holds 2 resource
= \Writer #2 holds N-2 resources

They’re both blocked forever

® Solution: Don’t allow two writers to
execute the for loop of P() calls
concurrently

® This can easily be done with mutual
exclusion

® \We need another semaphore!

void writer() {
while(true) {
for (i=0; i<N; i++)
P(sem);
<write to the DB>
for (i=0; i<N; i++)
V(sem);
}
}

" A
“OK” Reader/WNriter Solution

semaphore _t sem = N;
semaphore t wmutex = 1;

void writer() {
while(true) {

void reader() { P(wmutex):
while(true) { fo(,- (i=0; i<%\,l' i++)
P(sem); P(sem);
<read from the DB> V(wmutex’);
V(sem); <write to the DB>
} for (i=0; i<N; i++)
} V(sem);
}

}

"
Reader-Writer Lock

® You may remember that | mentioned reader-writer locks

B This is a special kind of lock designed especially for the
reader-writer problem

® java.util.concurrent.locks.ReentrantReadWriteLock

ReentrantReadWriteLock rwl =
new ReentrantReadWriteLock();

;’v-vl..read Lock().lock();
;’v-vl..read Lock().unlock();
rwl.writeLock().lock();

rwl.writeLock().unlock();

"
java.util.concurrent Semaphore

® Thereis a
Java.util.concurrent.Semaphore

® |t simply implements a semaphore
P() is called acquire()
V() is called release()

m |t works exactly like you think it does

Pros/Cons for Semaphores

m Good

A single mechanism for many things

= mutual exclusion, resource sharing, signaling/
blocking

General enough to solve any concurrency/
synchronization problem

Sometimes surprisingly elegant/short programs

m Bad

The fact that a single mechanism is used for multiple
things can make a program very difficult to understand

Not very modular: e.g., the use of a semaphore in a
thread depends on its use in another thread with
dreaded “hand-off” behavior that may have been
Implemented

" A
Conclusion

m As this point we’ve seen the two main low-
level abstractions for thread synchronization

Locks + condition variables
Semaphores

®m Next up, we look at famous concurrency
problems

m But first, let's look at Assignment #7...

