
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Semaphores

Semaphores
 We have seen

 Locks for mutual exclusion
 Condition Variables for synchronization

 Semaphores are unified signaling mechanisms for
both mutual exclusion and synchronization

 Removes the need for counters,	 	 	 	
and additional boolean variables

 History
 Proposed in 1968 by Dijkstra
 Inspired by railroad semaphores:

 Up/Down, Red/Green

Not more powerful!
 Everything you can do with locks+condvars you can

do with semaphores, and vice-versa
 Sometimes the code looks much cleaner with one

option than the other (we’ll see examples)
 You will see both options used in practice

 Depends on projects, people’s preferences, languages,
etc.

 Some people are very opinionated about it
 Some students after taking this course say they only like

one of the two (Semaphores are strangely attractive to
some)

 Once you truly understand concurrency, switching
back and forth between the two options is really easy

Semaphore Operations
 A semaphore is an integer variable that is never < 0
 It can be initialized to any >=0 integer value
 The semaphore provides two atomic operations
 The P operation

 P: from Dutch “proberen”, “to test”
 Waits for the variable to be > 0 and then decrements the

semaphore by 1
 The V operation

 V: from Dutch “verhogen”, “to increment”
 Increments the semaphore by 1

 Can be implemented from scratch using atomic hardware
instructions

 Let’s live code a Semaphore class in Java right now…

Types of Semaphores

 Binary Semaphore:
 Takes only values 0 and 1

 Either enforced by the implementation with checks,
or implicitly by initializing it to 0 and always calling P()
after V()

 Can be used for mutual exclusion
 Can be used for signaling

 Counting Semaphores:
 Takes any non-negative value
 Typically used to count resources and block

resource produces and consumers

Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore
(which I call “mutex” to remember it’s about
mutual exclusion) is as simple as with a lock

semaphore_t mutex = 1;
int shared_variable;
void worker() {
 while(1) {
 P(mutex);
 shared_variable++;
 V(mutex);
 }
}

Critical Section with Semaphores

 Doing a critical section with a (binary) semaphore
(which I call “mutex” to remember it’s about
mutual exclusion) is as simple as with a lock

Main difference with locks:

 A call to unlock() on an
unlocked lock does nothing

 but you shouldn’t really do
it as it a bit incoherent

 A call to V() always increments
the semaphore by one

 so calling V() extra times is
most likely a bug

semaphore_t mutex = 1;
int shared_variable;
void worker() {
 while(1) {
 P(mutex);
 shared_variable++;
 V(mutex);
 }
}

Signaling Semaphores
 Another use of binary semaphore is to signal some event

 A thread waits for an event by calling P
 A thread signals the event by calling V

 Example: a “barrier” between two threads

. . .

. . .
V(ready1);
P(ready2);
. . .
. . .

Thread #1

. . .

. . .
V(ready2);
P(ready1);
. . .
. . .

Thread #2

semaphore ready1 = 0;
semaphore ready2 = 0;

Global Variables

Comparing with locks/condvars

 Semaphores encapsulate the “counting variable”, thus shorter code
 Generalizing to >2 threads requires an array of semaphores…

 Doing “two things at once” is great? or is it confusing?

. . .
V(ready1);
P(ready2);
. . .

. . .
V(ready2);
P(ready1);
. . .

semaphore ready1 = 0;
semaphore ready2 = 0;

int x =0;
cond_t cond;
lock_t mutex;

. . .
lock(mutex);
x++;
if (x < 2) {
 wait(cond, mutex);
} else {
 signal(cond);
}
unlock(mutex);
. . .

semaphores
locks and
cond vars

Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets

flag to zero before doing something

Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets

flag to zero before doing something

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

int flag;
semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

In a while loop to avoid
spurious wakeups!

Signaling with Semaphores
 Example: Thread #2 waits until Thread #1 sets

flag to zero before doing something

Equivalent to a wait() on
condition variable
 - release the mutex
 - wait
 - reacquire the mutex

Thread #1

Thread #2

im
portant. . .

P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

int flag;
semaphore_t mutex = 1;
semaphore_t cond = 0;

Comparing with locks/condvars

Thread #1
Thread #2

. . .
lock(mutex);
while (flag != 0) {
 wait(cond, mutex);
}
<do something>
unlock(mutex);
. . .

. . .
lock(mutex);
flag--;
if (flag == 0)
 signal(cond);
unlock(mutex);
. . .

int flag;
lock_t mutex;
cond_t cond;

Thread #1
Thread #2

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

int flag;
semaphore_t mutex = 1;
semaphore_t cond = 0;

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

One possible interleaved execution:

A B

mutex cond

B: P(mutex)

B: V(mutex)

A: P(mutex)

flag = 1

flag =0

B: P(cond)

A: V(cond)

B: P(mutex)
B: blocked

A: V(mutex)

B: do something
B: V(mutex)

[B: P(mutex)

B: unblocked

Can we optimize this?

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

 Can we remove some calls to P() and V()?
 Consider the following line of reasoning:

 The flag is, say, = 1
 Thread #2 shows up first, does P(mutex)/

V(mutex), then P(cond), and blocks, as it should
 Thread #1 shows up, P(mutex), sets the flag to

0. It then does V(cond), as it should
 Thread #1 then does V(mutex). This is because

Thread #2 will need to enter the critical section
after waking up from P(cond)

 So we have the following:
 Thread #1 is in the critical section
 It wakes up Thread #2, which should then

enter the critical section right away
 Optimization: Don’t call V(mutex) on Thread #1

and don’t call P(mutex) on Thread #2
 Intuitive explanation: Thread #1 allows Thread #2

to “continue” in the critical section
 This is called “passing the baton”

Passing the Baton

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 // receive “privileges”
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
 // transfer

“privileges”
else
 V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the
critical section after waking up, and A is done with the critical section, then
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

Passing the Baton

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 P(mutex);
}
<do something>
V(mutex);

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

. . .
P(mutex);
while (flag != 0) {
 V(mutex);
 P(cond);
 // receive “privileges”
 P(mutex);
}
<do something>
V(mutex);
. . .

. . .
P(mutex);
flag--;
if (flag == 0)
 V(cond);
 // transfer

“privileges”
else
 V(mutex);
. . .

semaphore_t mutex = 1;
semaphore_t cond = 0;

Thread #1

Thread #2

If A is in a critical section, and A needs to wake up B that should enter the
critical section after waking up, and A is done with the critical section, then
A can just “skip” the V(mutex) and B can “skip” the P(mutex), and it works!

You can see why some find

semaphores powerful but confusing

Split Binary Semaphores
 A typical usage of binary semaphores is to do

mutual exclusion and signaling at the same time
 Consider a specific Producer/Consumer problem

 We have an arbitrary number of producers
 We have an arbitrary number of consumers
 We have a buffer that can contains a single element,

consumed by consumers and produced by producers
 Consumers must be delayed while the buffer is empty
 Producers must be delayed while the buffer is full

 This can be easily implemented with 2 binary
semaphores

Single Buffer Prod/Cons

void producer() {
 while(true) {
 P(empty);
 buffer = <some value>;
 V(full);
 }
}

semaphore_t empty = 1;
semaphore_t full = 0;

void consumer() {
 while(true) {
 P(full);
 consume(buffer);
 V(empty);
 }
}

Single Buffer Prod/Cons

void producer() {
 while(true) {
 P(empty);
 buffer = <some value>;
 V(full);
 }
}

semaphore_t empty = 1;
semaphore_t full = 0;

void consumer() {
 while(true) {
 P(full);
 consume(buffer);
 V(empty);
 }
}

 There is a simple “ping-pong” between the full and the empty
semaphores

 0 ≤ full + empty ≤ 1 (called a “split binary semaphore” effect)
 We get mutual exclusion “for free”
 The above is called split binary semaphores

Split Binary Semaphores

 Semaphores are initialized to (X=0,Y=1)
 They alternate between (X=0,Y=1) and (X=1,Y=0)
 Example: Starting with (X=0,Y=1)

 Thread #1 cannot get to statement <S>
 Thread #2 sets Y to 0
 Thread #2 executes statement <T>
 Thread #2 sets X to 1
 We now have (X=1,Y=0)
 Thread #2 cannot get to statement <T>
 Thread #1 execute statement <S>
 ...

Thread #1: while (true) { P(X); <S>; V(Y); }
Thread #2: while (true) { P(Y); <T>; V(X); }

Split Binary Semaphores
 This is the kind of “hand off” we had discussed

when trying to implement producer/consumer
only with locks

 With locks, I mentioned it was error prone
 Therefore, this is error-prone too: a code with

tons of P() and V() hand-offs on many different
semaphores will be very hard to understand/
debug/maintain
 Giving semaphores good names is paramount

 But for simple cases it’s very readable and elegant
 And we try to keep cases simple with concurrency,

since going “fancy” is difficult regardless

General (non-binary) Semaphores

Semaphores that take values higher than 1 are
typically used to control access to a limited
number of resources

 In the previous example we controlled access to
a single resource, i.e., one buffer slot

The value of the semaphore indicates the
number of free resources, from 0 to N

Let’s look at the “bounded buffer” producer/
consumer problem

We already did this with condition variables, but
we’ll see now that with semaphores it’s a bit
easier

Bounded Buffer Prod/Cons

 Problem statement:
 Arbitrary numbers of producers and consumers
 The buffer can only store N elements
 As we did before, our buffer will be a queue

 In our split binary semaphore example,
mutual exclusion was enforced implicitly with
the full/empty semaphores

 With general semaphores, we need an extra
semaphore for mutual exclusion

 Let’s look at the code

One attempt

void producer() {
 while(true) {
 P(mutex);
 P(freeSlots);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

void consumer() {
 while(true) {
 P(mutex);
 P(occupiedSlots)
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? (poll)

semaphore_t freeSlots = N;
semaphore_t occupiedSlots = 0;
semaphore_t mutex = 1;

Nope: Deadlock
void producer() {
 while(true) {
 P(mutex);
 P(freeSlots);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

void consumer() {
 while(true) {
 P(mutex);
 P(occupiedSlots)
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? NO: DEADLOCK
 The buffer is full
 Producer acquires binary semaphore mutex
 Producer blocks trying to acquire semaphore freeSlots

because the buffer is full
 All consumers block trying to acquire binary semaphore mutex!

Swapping the calls to P()

void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

semaphore_t freeSlots = n;
semaphore_t occupiedSlots = 0;
semaphore_t mutex = 1;

void consumer() {
 while(true) {
 P(occupiedSlots)
 P(mutex);
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? (poll)

Swapping the calls to P()
void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(mutex);
 V(occupiedSlots);
 }
}

void consumer() {
 while(true) {
 P(occupiedSlots)
 P(mutex);
 <remove element from queue>
 V(mutex);
 V(freeSlots);
 }
}

 Does this work? YES
 Can be formally proven
 But you can easily see that we removed the

deadlock problem since now a thread first checks
if it can do work before getting the mutex

Swapping the Calls to V()?
void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(occupiedSlots);
 V(mutex);
 }
}

void consumer() {
 while(true) {
 P(occupiedSlots);
 P(mutex)
 <remove element from queue>
 V(freeSlots);
 V(mutex);
 }
}

 We can also think of swapping the V() calls
 Does this work? (poll)

Swapping the Calls to V()?
void producer() {
 while(true) {
 P(freeSlots);
 P(mutex);
 <add element to queue>
 V(occupiedSlots);
 V(mutex);
 }
}

void consumer() {
 while(true) {
 P(occupiedSlots);
 P(mutex)
 <remove element from queue>
 V(freeSlots);
 V(mutex);
 }
}

 We can also think of swapping the V() calls
 Does this work? YES
 It doesn’t matter in which order the two things a thread is waiting for are

signaled given that both are needed (the V() calls can be in any order)
 And besides, blocking threads just get back to the ready queue and

there could be other threads ahead of them anyway

Reader/Writer
 Another classical concurrency model is the

reader/writer problem
 We have two kinds of processes:

 Readers: read records from a database
 Writers: read and write records from a database

 Selective mutual exclusion
 Concurrent readers are allowed
 A writer should access the database in mutual

exclusion with all other writers and readers
 Typical of database applications

 e.g., a Web/database server with one thread per
transaction

A Naive Solution

void reader() {
 while(true) {
 P(rw);
 <read from the DB>
 V(rw);
 }
}

semaphore_t rw = 1;

void writer() {
 while(true) {
 P(rw);
 <write to the DB>
 V(rw);
 }
}

 It this a good reader-writer solution? (poll)

A Naive Solution

void reader() {
 while(true) {
 P(rw);
 <read from the DB>
 V(rw);
 }
}

semaphore_t rw = 1;

void writer() {
 while(true) {
 P(rw);
 <write to the DB>
 V(rw);
 }
}

 Not a good solution: it works but implements too strict a
constraint as there can be no concurrent database reads

 Loss of throughput/performance because concurrent
reads should be allowed

 In many applications, there are few writers and many readers

Reader-Preferred Solution

 One simple fix is to allow multiple readers
in a “greedy” fashion:
 There is still a rw semaphore
 While a reader is reading, other readers

should be allowed in
 Therefore we should have a variable, nr,

keeping track of the current number of readers
 That variable is used / updated by all readers,

and should be protected by a mutual exclusion
semaphore

 Let’s look at the code

Reader-Preferred Solution
void reader() {
 while(true) {

 P(mutex);
 if (nr == 0) P(rw); // I am first
 nr++;
 V(mutex);

 <read from the DB>

 P(mutex);
 nr--;
 if (nr == 0) V(rw); // I am last
 V(mutex);
 }
}

semaphore_t mutex = 1;
semaphore_t rw = 1;
int nr = 0;

void writer() {
 while(true) {
 P(rw);
 <write to the DB>
 V(rw);
 }
}

Anybody sees the
problem with this?

Reader-Preferred Solution
 The problem of the reader-preferred solution is

that it is too reader-preferred
 There could be starvation of the writers

 If there is always a reader able to read, the rw
semaphore will be monopolized by readers forever

 Turns out it’s very difficult to modify the code to
make it fair between readers and writers
 There is a classic solution that uses synchronization

and the “passing the baton” technique
 Based on a invariant condition and subtle signaling
 You can look at it on your own if interested

 Let’s instead look at a simple but pretty good
solution

Maximum number of readers
 Let us define a maximum number of allowed concurrent

readers, which simplifies the problem
 And most likely makes sense for most applications

 Let’s say we allow at most N concurrent active readers
 We create a “resource” semaphore with initial value N
 Each reader needs to acquire one resource to be able to

read
 Therefore, N concurrent readers are allowed

 Each writer needs to acquire N resources to be able to
write

 Therefore, only one writer can be executing at a time and
no readers can be executing concurrently

 Let’s look at the code

Reader/Writer

void reader() {
 while(true) {
 P(sem);
 <read from the DB>
 V(sem);
 }
}

semaphore_t sem = N;

void writer() {
 while(true) {
 for (i=0; i<N; i++)
 P(sem);
 <write to the DB>
 for (i=0; i<N; i++)
 V(sem);
 }
}

Does this work? (consider multiple writers) (poll)

Reader/Writer
void writer() {
 while(true) {
 for (i=0; i<N; i++)
 P(sem);
 <write to the DB>
 for (i=0; i<N; i++)
 V(sem);
 }
}

 Deadlock!
 One could have two writers each start

acquiring resources concurrently
 For instance

 Writer #1 holds 2 resource
 Writer #2 holds N-2 resources

 They’re both blocked forever
 Solution: Don’t allow two writers to

execute the for loop of P() calls
concurrently

 This can easily be done with mutual
exclusion

 We need another semaphore!

“OK” Reader/Writer Solution

void reader() {
 while(true) {
 P(sem);
 <read from the DB>
 V(sem);
 }
}

semaphore_t sem = N;
semaphore_t wmutex = 1;

void writer() {
 while(true) {
 P(wmutex);
 for (i=0; i<N; i++)
 P(sem);
 V(wmutex);
 <write to the DB>
 for (i=0; i<N; i++)
 V(sem);
 }
}

Reader-Writer Lock
 You may remember that I mentioned reader-writer locks
 This is a special kind of lock designed especially for the

reader-writer problem
 java.util.concurrent.locks.ReentrantReadWriteLock

ReentrantReadWriteLock rwl =
new ReentrantReadWriteLock();

. . .
rwl.readLock().lock();
. . .
rwl.readLock().unlock();
. . .
rwl.writeLock().lock();
. . .
rwl.writeLock().unlock();
. . .

java.util.concurrent Semaphore

 There is a
java.util.concurrent.Semaphore

 It simply implements a semaphore
 P() is called acquire()
 V() is called release()

 It works exactly like you think it does

Pros/Cons for Semaphores
 Good

A single mechanism for many things
 mutual exclusion, resource sharing, signaling/

blocking
General enough to solve any concurrency/

synchronization problem
Sometimes surprisingly elegant/short programs

 Bad
The fact that a single mechanism is used for multiple

things can make a program very difficult to understand
Not very modular: e.g., the use of a semaphore in a

thread depends on its use in another thread with
dreaded “hand-off” behavior that may have been
implemented

Conclusion

 As this point we’ve seen the two main low-
level abstractions for thread synchronization
 Locks + condition variables
 Semaphores

 Next up, we look at famous concurrency
problems

 But first, let’s look at Assignment #7…

