
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Thread Safety

Disclaimer

 The first 15 slides are a review of ICS 332
(Operating Systems) content

 So I’ll go pretty fast, but, if any of this isn’t
clear or has been forgotten, it’s important to
stop me and ask for clarifications

The Trouble with Threads
 Threads share the same address space
 If no two threads update content at the same

address in memory, we’re fine
 They would be just like processes, but for the fact that

they share the code and can read the same memory
 But, it’s very useful to have them “cooperate” by

updating content at the same addresses
 e.g., two threads that cooperate to compute the value

of a single variable to compute it faster
 e.g, two threads that update an index in an array to

“the next image that should be analyzed”
 This is where problems can arise

Textbook Example
int x; // global variable shared by
 // all threads

// thread #1’s code
...
x++
...

// thread #2’s code
...
x--
...

Textbook Example
 The previous code is compiled into lower level code

 Assembly code in the case of C code
 Byte code in the case of Java code

 Let’s write the code in RISC-like x86 assembly, and
assume a single core

Textbook Example
 The previous code is compiled into lower level code

 Assembly code in the case of C code
 Byte code in the case of Java code

 Let’s write the code in RISC-like x86 assembly, and
assume a single core

// Thread #1

mov eax,[@]
inc eax
mov [@], eax

// Thread #2

mov eax,[@]
dec eax
mov [@], eax

Load value from
RAM into a register

Decrement the value
in the register

Store the value from
the register into RAM

Textbook Example
 Illusion of concurrency: the OS context-switches threads rapidly
 We have many possible execution interleavings
 Here is one:

mov eax, [@]
inc eax
mov eax, [@]
dec eax
mov [@], eax
mov [@], eax

context-
switch

context-
switch

Same Register?

mov eax, [@]

 In the previous slides the code shows that both threads use
the same register (eax)

 As you recall from your OS course, at each context-switch
register values for a thread/process are written back to RAM
(to the PCB) and loaded back from RAM (from the PCB)

 So both threads can reference the same register in their
code (in fact it’s the SAME code), but through the magic of
context-switching they have the illusion of having their own
set of private registers

 We show this difference with the blue and red colors

mov eax, [@]

Red thread’s
“private” eax register

Blue thread’s
“private” eax register

Textbook Example
 Illusion of concurrency: the OS context-switches threads rapidly
 We have two 3-instructions sequences
 Discrete math: we have 20 possible instruction interleaving
 Here are 3 possible execution paths:

mov eax, [@]
inc eax
mov eax, [@]
dec eax
mov [@], eax
mov [@], eax

mov eax, [@]
inc eax
mov eax, [@]
dec eax
mov [@], eax
mov [@], eax

mov eax, [@]
mov eax, [@]
dec eax
inc eax
mov [@], eax
mov [@], eax

Textbook Example

load eax, [@] // eax = 5
inc eax // eax = 6
load eax, [@] // eax = 5
dec eax // eax = 4
store [@], eax // [@] = 4
store [@], eax // [@] = 6

load eax, [@] // eax = 5
inc eax // eax = 6
load eax, [@] // eax = 5
dec eax // eax = 4
store [@], eax // [@] = 6
store [@], eax // [@] = 4

load eax, [@] // eax = 5
load eax, [@] // Jax = 5
dec eax // eax = 4
inc eax // eax = 6
store [@], eax // [@] = 4
store [@], eax // [@] = 6

Let’s assume that initially [@] = 5

We would expect [@] to be 5 at the end
But in these executions we get 4 or 6!!

Race Condition
 The bug is called: a race condition

 Its manifestation in this case is called: a lost update
 The race condition has a non-zero probability of manifesting

 It may not manifest for 10,000 runs, and then do so for the
10,001st run

 It happens because the ++/-- operation is not atomic
 It has to be done in multiple (hardware) steps, which can then

be interleaved with other steps from other threads
 Unlike, say, “set x to 2”, which is atomic because done in “one

hardware instruction”
 Most of what we think of as an “operation” in a high-level

language is not atomic when translated to assembly /bytecode
e.g., adding an element to a linked list

 There is a RaceCondition.java program on the Web site
Look at it to see race conditions in action

Program Correctness
 Race conditions mean that multiple executions of the same

program may lead to different outcomes
 But in some cases this may be ok

while(1) { x++;} while(1) { print(x); }

int x = 0;

 In the above we don’t know what sequence of numbers will be
printed, but perhaps that’s ok

 It all depends on what we mean by “correct”
 Perhaps non-determinism is ok, or even a feature
 After all, you can also generate (pseudo)random numbers!

 If the output is non-deterministic and non-desirable, then we say
it’s a race condition that we should fix because it’s a bug

Race Condition: Be Picky
 There is a Race Condition if there is at least one execution path

that leads to an incorrect outcome
 It doesn’t matter how unlikely that execution path is

 We’ll see some pretty unlikely ones
 If its probability is >0, the program is incorrect and needs to be

fixed
 In this course we’ll often look at code and then wonder: is there a

race condition?
 We do this by playing an adversary that makes the worst

possible thread execution interleaving that will break the program
 You pretend you’re an evil OS that will insert the most inopportune

context-switches to break concurrent code
 This is why we have programming assignments AND “pencil-

and-paper” assignments

What about true concurrency?
 So far we’ve talked about context-switching in the context of race

conditions, i.e., false concurrency
 Race conditions also happen with true concurrency when each

thread is on its own core
 For instance, for the lost update example:

 Each thread grabs the original value, apply its update on it, and then
writes the result to RAM

 Whichever thread writes the result last “wins”
 This is why it’s called a race condition: the result depends on which

threads gets to do the operation last, which is “randomly” determined
by thread scheduling in the O/S, assignment of threads to cores, etc.

 Typically, I’ll always assume a single core and talk about context-
switching, but everything holds true with true concurrency

 A race condition may be more/less likely with true concurrency, but it
remains a race condition nonetheless

Why we don’t like Race Conditions

 We know that bugs can be difficult to identify
 Bugs that happen non-deterministically (perhaps

very rarely) are close to impossible to identify
 Often one needs to change the system to observe the

bug’s manifestation (e.g., the probability of manifestation
could be higher with true concurrency than with false
concurrency, the probability of manifestation is higher with
one O/S than with another, could be minuscule if we add
print statements, could depend on the compiler version)

 Therefore, one must learn how to write code without
race conditions because debugging them after the
fact is really difficult

 Hence the need for so-called “thread safety”

Thread Safety
 You may have heard the term “thread-safe” before, applied to

functions/methods/libraries
 A method is thread-safe if it can be active (has been called but

hasn’t returned yet) for two or more threads at the same time
and guarantees that no race condition will ever occur in that
method
 i.e., two or more threads can have an activation record for the

method in their stack
 i.e., two or more threads have called it and are still “in it”

 If a method is not thread-safe, then the programmer must be
very careful when using threads

 e.g., public void increment() {this.value++;}
 If the documentation doesn’t say what is thread-safe and what

isn’t, then the documentation is poor
 Sadly, very common (or not sufficiently clear)

Thread-Safe Methods/Functions

 In these lecture notes we assume that we can
make methods/functions thread-safe
 We will learn how to do that in the next modules

 But for now, imagine you have a programming
language that has some threadsafe
keyword when declaring methods
 e.g., public threadsafe void increment()
{this.value++;}

 We will see how it’s actually done in various
languages
 Java is “close” to the above syntax actually

Thread-Safe Methods
 Say you use a library that provides a Counter class with two thread-

safe methods: Counter.increment() and Counter.decrement()
 Thanks to thread safety we can have any number of threads call

these methods and there will be no race conditions

// Thread #1
…
counter.increment()
…
counter.increment()
…
counter.increment()
…

// Thread #2
…
counter.decrement()
…
counter.increment()
…
counter.decrement()

// Thread #3

…

counter.decrement()

…

counter.decrement()

…

Counter counter = new Counter(0);

 We’re guaranteed that the final counter value will be 0

Thread-Safe Methods?
 So, it would seem that one just needs to use thread-safe

methods and we’re good, right?
 Unfortunately, things are not so peachy
 Problem #1: Many methods out there are not thread-

safe
 Sometimes because developers haven’t gotten around to

making them thread-safe
 Sometimes because they chose to not make them thread-safe
 We will see why this is a reasonable choice in a few slides

 Problem #2: Even if you use only thread-safe methods,
you can still have race conditions!

 This seems counter-intuitive, but in fact it’s pretty obvious
 Let’s see this on an example…

Thread-Safety Thwarted
 Say we have a DataBase ADT with 4 thread-safe API functions:

 int threadsafe read_record(int r) // reads record at index r
 // reading a non-existing record is a bug

 void threadsafe write_record(int val) // writes/appends a new record
 void threadsafe remove_last_record() // removes the last record
 int threadsafe get_length() // returns # of records

 We have three threads:

// Writer
…
a.write_record(stuff)
…

// Remover
…
if (a.get_length() > 0) {
 a.remove_last_record()
}
…

 Can you see the race condition? (which causes a read of a non-existing record)

// Reader

…

length = a.get_length()

if (length > 0) {

 a.read_record(length-1)

}

…

Thread-Safety Thwarted
// Writer
…
a.write_record(stuff)
…

// Remover
…
if (a.get_length() > 0) {
 a.remove_last_record()
}
…

 Database is empty
 Writer puts in a record
 Reader calls a.get_length() and gets return value 1
 Reader gets into the if since length > 0
 Reader is about to call a.get_record(0), but is context-switched out!
 Remover removes the last record, making the database empty
 Reader is context-switched back in, and calls a.get_record(0) on

an empty database, which is a bug!

// Reader

…

length = a.get_length();

if (length > 0) {

 a.read_record(length-1)

}

…

Thread-Safety Thwarted
// Writer
…
a.write_record(stuff)
…

// Remover
…
if (a.get_length() > 0) {
 a.remove_last_record()
}
…

 Database is empty
 Writer puts in a record
 Reader calls a.get_length() and gets return value 1
 Reader gets into the if since length > 0
 Reader is about to call a.get_record(0), but is context-switched out!
 Remover removes the last record, making the database empty
 Reader is context-switched back in, and calls a.get_record(0) on an

empty database, which is a bug!

// Reader

…

length = a.get_length();

if (length > 0) {

 a.read_record(length-1)

}

…“checking length” followed by “reading” is not atomic

These are calls to thread-safe (“atomic”) methods

But a sequence of two atomic operations is not atomic!

You can’t Escape Concurrency
 Because the world has become multi-threaded, even

when your program doesn’t use threads explicitly, you
can have race conditions!

 A great example of this is with Java GUIs
 And in fact other GUI systems as well

 JavaFX grew out of Java Swing, which itself grew out of
java.awt

 The nice thing about java.awt was that it was thread-safe!
 The awt developers did a bunch of work to avoid race conditions,

so that the awt users don’t have to
 But thread-safety reduces performance

 We’ll understand why that is in future lectures
 Essentially: even if you know that there is no risk of race condition,

the library doesn’t and has to assume the worst

JavaFX is not Thread-Safe

 Most methods in JavaFX are not thread-safe!!
 At first glance this seems terrible:

 Your JavaFX code is now susceptible to race
conditions!

 The JavaFX developer needs to know about
concurrency!
 But then, all developers should know about concurrency

nowadays…

 But, because JavaFX is not thread-safe, it is
more efficient than awt

 Let’s see how this all works…

Threads in the JVM
 The JVM has many daemon threads (e.g., the Garbage Collector)
 We’ve talked about the JavaFX Application Thread, which:

 Catches and dispatches GUI events
e.g., detects a mouse click and figures out that it’s on a

particular swing component
 Executes “paint” operations of GUI components

e.g., to redraw something
 JavaFX was designed so that it is not thread-safe
 Therefore we have a problem:

The JavaFX Application Thread manipulates the states of
JavaFX components

Any user thread (including your main thread) can manipulate
the states of JavaFX components, and in fact you need that
for most useful GUIs

But then, you’re open to race conditions!
Let’s check if this happens…

Bad JavaFX Program

 Let’s look at BadJavaFXProgram.java on the
course Web site….
 It simply creates a displayable list of strings, and

then starts a thread that adds/removes from that
list of strings

 Let’s run the program…
 From my IDE
 Due to a known JVM issues, the program will not

stop due to exceptions (but we should be able to
see them in the terminal output!)

What is Going On?

 We get several exceptions, and in particular
this one

 java.lang.IllegalStateException:
Not on FX application thread

 This is sort of informative: one of your
threads (we only have one!) is doing things
that some other thread should be doing
 That other thread is the JavaFX application

thread

How do we fix it?
 What we need, is a mechanism to say “please JavaFX

Application Thread, do this thing for me”
 We don’t have access to the code of the JavaFX Application Thread,

but we need it to run our code
 Platform.runLater(Runnable)

 We’ve talked about this for unfreezing an application
 But we can also use it to force some code to be executed by the

JavaFX Application Thread
 Not right now, but as soon as it gets to it!
 Recall that the JavaFX Application Thread essentially maintains a list

of Runnable objects on which it will call the run() method in sequence
 Some of the Platform.runLater() calls in the starter code of

ics432imgapp are about thread safety
 Sometimes just to avoid the “this should run on the JavaFX Application

Thread” exception

First Fix Attempt
 Let’s put each call to add()/remove() inside a

Runnable and run the program again…
 What do we see?

First Fix Attempt
 Let’s put each call to add()/remove() inside a

Runnable and run the program again…
 What’s do we see???
 java.lang.IndexOutOfBoundsException:
Index 1 out of bounds for length 0

 We are getting race conditions!
 By the time a Runnable runs, an item could already have

been removed by another Runnable
 Since removing an element is not instant, we can’t just

look at what’s in the list right now to pick an element in
it!

 So, this doesn’t work because our code could issue, for
instance: remove(0) followed by remove(0)

Second Fix Attempt

 Let’s put the whole loop body inside a thread
and run the program again…

 What do we see?

Second Fix Attempt
 Let’s put the whole loop body inside a thread and run

the program again…
 What do we see?

 Nothing moves!
 This is because our code HAMMERS the JavaFX

Application thread with Runnable objects
 This is a common “bad practice”

 Let’s do another bad practice: add a sleep!
 We have a pretty terrible program, and there are still

possibilities for race conditions!
 The probability is 0.000…01, but still

On using Platform.runLater()
 Using Platform.runLater() in this program doesn’t fix it
 One typically limits its use to a one-shot activity

 e.g., click on the “Remove this file” button will spawn off a “Remove
this file” Runnable

 e.g., a click on this button disables that other button
 See Homework #2 :)

 In the end, our example is just too brutal (and useless)
 A way to fix it would be to somehow “remember” previous

deletions and additions in a separate data structure
 We just cannot “look” at the item list to know what’s in the list
 This is because the JavaFX Application Thread is about to modify it

based on our previous requests
 But in a reasonable program, hopefully we can do the right

thing without too much trouble

JavaFX Philosophy Summary

 The JavaFX philosophy in twofold:
 Methods that update GUI elements are not

thread-safe
 But we have mechanisms to ensure they’re

always called by the same thread

 This philosophy works for JavaFX but is not
universal: often we need to create thread-
safe methods

Conclusion
 A thread-safe method is one that can be called by

multiple threads simultaneously without race conditions
 When using third-party software, you must find out

which methods are thread-safe and which are not
 When writing libraries to be used by others, you

must document which methods are thread-safe
 Even if you only call thread-safe methods, you can still

have thread-safety issues
 Even if you don’t use threads, you use libraries/

runtimes that use them
 e.g., when building GUIs with JavaFX

 Next up: How we make methods thread-safe

