
Henri Casanova (henric@hawaii.edu)

ICS432 
Concurrent and High-Performance  

Programming

Multithreading  
in C/C++



Pthreads

 Almost every modern language gives you 
mechanisms for multi-threading 

 C/C++ is no exception 
 Low-level mechanisms are implemented in 

the Pthreads library (POSIX standard) 
 It is a bit cumbersome, but you can do pretty 

much everything with it 
 We are not going to do any Pthreads in this 

course, but let’s just look at a small example 
to give you a sense of what it looks like….



Pthread Hello World (Thread code)
#include <stdio.h> 
#include <pthread.h> 
#include <stdlib.h> 

// Data structure to pass arguments to threads 
struct argstruct { 
  int *array; 
  int size; 
}; 

// Thread’s “main” function 
void *do_work(void *arg) { 
  int *A = ((struct argstruct *)(arg))->array; 
  int n = ((struct argstruct *)(arg))->size; 
  long sum = 0; 
  for (int i=0; i < n; i++)  sum += A[i]; 
  return (void*)sum; // hideous 
}

In Pthreads, we can only pass a 
void* to a thread. So one typically 
creates a data structure with the 
arguments we want to pass to a 
thread, and then pass a pointer to it!



Pthread Hello World (Thread code)
#include <stdio.h> 
#include <pthread.h> 
#include <stdlib.h> 

// Data structure to pass arguments to threads 
struct argstruct { 
  int *array; 
  int size; 
}; 

// Thread’s “main” function 
void *do_work(void *arg) { 
  int *A = ((struct argstruct *)(arg))->array; 
  int n = ((struct argstruct *)(arg))->size; 
  long sum = 0; 
  for (int i=0; i < n; i++)  sum += A[i]; 
  return (void*)sum; // hideous 
}

Therefore, the first thing thread 
does is “unpack” its arguments



Pthread Hello World (Thread code)
#include <stdio.h> 
#include <pthread.h> 
#include <stdlib.h> 

// Data structure to pass arguments to threads 
struct argstruct { 
  int *array; 
  int size; 
}; 

// Thread’s “main” function 
void *do_work(void *arg) { 
  int *A = ((struct argstruct *)(arg))->array; 
  int n = ((struct argstruct *)(arg))->size; 
  long sum = 0; 
  for (int i=0; i < n; i++)  sum += A[i]; 
  return (void*)sum; // hideous 
}

A Pthread must return a void *. 
In this case we (horribly) cast a 
long to a void * to return an 
integer from the thread



Pthread Hello World (Full Program)
#include <stdio.h> 
#include <pthread.h> 
#include <stdlib.h> 

// Data structure to pass arguments to threads 
struct argstruct { 
  int *array; 
  int size; 
}; 

// Thread’s “main” function 
void *do_work(void *arg) { 
  int *A = ((struct argstruct *)(arg))->array; 
  int n = ((struct argstruct *)(arg))->size; 
  long sum = 0; 
  for (int i=0; i < n; i++)  sum += A[i]; 
  return (void*)sum; // hideous 
}

int main(int argc, char **argv) { 
  // Allocate and initialize an array 
  int *A = (int *)malloc( 100 * sizeof(int) ); 
  for (int i = 0; i < 100 ; i++) A[i] = rand() % 100; 
  // Set up thread argument structure 
  struct argstruct *arg = (struct argstruct *) 

calloc(1,sizeof(struct argstruct)); 
  arg->array = A;  arg->size = 100; 
  // Launch a thread 
  pthread_t thread; 
  pthread_create(&thread, NULL, do_work, arg); 
  int return_value; 
  // Wait for the thread 
  pthread_join(thread, (void*)&return_value); 
  printf("sum = %d\n", return_value); 
} 



Beyond Pthreads
 Pthreads are cumbersome, especially for novice programmers 

 Creating tons of data structures and casting gets old really quickly 
 There have been many attempts at making it easier so that 

the developer does not have to write Pthread code by hand 
 There are libraries, such as Boost (for C++), that provide 

easier APIs than Pthreads, and use Pthreads underneath 
 There are also language extensions (that requite a compliant 

compiler that generates Pthread code for you) 
 A common C language extension is CILK 

 Research project at MIT that went commercial 
 Acquired/supported by Intel (CILKPlus in forks of GCC/Clang) until it 

became obsolete ~2018 
 Let’s look at one CILK hello world program just so that you 

have a sense of what it looked like…



CILK in 10 seconds
void hello() { … } 
void foo() { … } 
void compute_stuff(int x) { … } 

int main(){ 
  cilk_spawn hello(); 
  cilk_spawn foo(); 
  cilk_sync; 
  cilk_for (int i = 0; i <= 10000; i++) { 
    compute_stuff(i); 
  } 
}



void hello() { … } 
void foo() { … } 
void compute_stuff(int x) { … } 

int main(){ 
  cilk_spawn hello(); 
  cilk_spawn foo(); 
  cilk_sync; 
  cilk_for (int i = 0; i <= 10000; i++) { 
    compute_stuff(i); 
  } 
}

CILK in 10 seconds

Create a taskCreate a task



void hello() { … } 
void foo() { … } 
void compute_stuff(int x) { … } 

int main(){ 
  cilk_spawn hello(); 
  cilk_spawn foo(); 
  cilk_sync; 
  cilk_for (int i = 0; i <= 10000; i++) { 
    compute_stuff(i); 
  } 
}

CILK in 10 seconds

Wait for (join 
with) all tasks



void hello() { … } 
void foo() { … } 
void compute_stuff(int x) { … } 

int main(){ 
  cilk_spawn hello(); 
  cilk_spawn foo(); 
  cilk_sync; 
  cilk_for (int i = 0; i <= 10000; i++) { 
    compute_stuff(i); 
  } 
}

CILK in 10 seconds

Parallel for loop!



C++ and std::thread

 Since C++ 11, threads and all 
synchronization operations are available in 
the standard library! 

 It basically does everything we have learned 
how to do in Java 

 It looks much, much nicer than using 
PThreads directly 

 Again, we’re not going to do this in this 
course, but let’s just look at a small 
example…



C++ 11  Thread Example
#include <thread> 
#include <iostream> 
std::condition_variable cond; 
std::mutex m_mutex;

int main(int argc, char **argv) { 
    std::thread alarm_clock(alarm_clock_function, 2); 
    std::thread sleeper(sleeper_function); 
    sleeper.detach(); 
    alarm_clock.join(); 
}

void sleeper_function() { 
    while (true) { 
        std::unique_lock<std::mutex> mlock(m_mutex); 
        cond.wait(mlock); 
        std::cout << "I am awake!" << std::endl; 
    } 
} void alarm_clock_function(int num_iterations) { 

    for (int i=0; i < num_iterations; i++) { 
        int duration = 1 + rand() % 4; 
        std::this_thread::sleep_for(std::chrono::seconds(duration)); 
        std::cout << "Alarm clock is going off" << std::endl; 
        cond.notify_one(); 
    } 
}



What now?
 We can apply what we’ve learned in Java to many  

different programming  languages directly 
 I could now go into “this is how it’s done in C#”,  etc. 
 But they are all the same, with syntactic differences 

 Besides JavaScript, which is weaker 
 Besides Rust, which is trying to do things differently 
 Besides Python, which is weird 

 We’ll about about those “special” cases later in the 
semester 

 But for now, let’s look at something quite different 
for C/C++, and quite popular: OpenMP



OpenMP
 A well-established and popular way to do multi-

threading in C/C++  is OpenMP 
 A library with some simple functions  
 The definition of a few C pragmas 

 pragmas are a way to “extend” C 
 provide an easy way to give hints/information to a compiler 
 This “compiler directive” way of programming goes way back… 

 A compiler that supports OpenMP 
 e.g., gcc since version 4.2 circa 2007 (compile with the 

-fopenmp flag) 
 It provides a somewhat rigid but still extremely useful 

programming model 
 The goal is: make it easy for developers



Fork-Join Programming Model
 Program begins with a Master thread 
 Fork: Teams of threads created at times during 

execution 
 Join: Threads in the team synchronize (barrier) 

and only the master thread continues execution



OpenMP and #pragma

 One needs to specify blocks of code that 
are executed in parallel 

 A parallel region: 
#pragma omp parallel [clauses] 

 Defines a region of the code that will be 
executed in parallel 

 The “clauses” specify many useful things, and 
we’ll see a few of them 

 All threads in the region execute the same 
code by default



OpenMP Example #1

#include <stdio.h> 
#include <omp.h> 
int main(){      
  printf(“Start\n”); 

  /* Start Parallel Code */ 
#pragma omp parallel 
{ // note the ‘{‘ 
   printf(“Hello World\n”); 
} // note the ‘}’ 

  /* Resume Serial Code */ 
  printf(“Done\n”); 
}

 OpenMP is finicky 
about  braces (new 
lines  needed!) 

 What we now need is 
to specify how many 
threads should run in 
the parallel region…



OpenMP Example #1

#include <stdio.h> 
#include <omp.h> 
int main(){      
  printf(“Start\n”); 
  omp_set_num_threads(4); 

  /* Start Parallel Code */ 
#pragma omp parallel 
{ 
   printf(“Hello World\n”); 
} 
  /* Resume Serial Code */ 
  printf(“Done\n”); 
}

 Let’s now have 
each thread print 
their identity…



OpenMP Example #1

#include <stdio.h> 
#include <omp.h> 
int main(){      
  printf(“Start\n”); 
  omp_set_num_threads(4); 

#pragma omp parallel 
{ 
  printf(“Hello World (%d/%d)\n”, 
          omp_get_thread_num(), 
          omp_get_num_threads()); 
} 
  printf(“Done\n”); 
}

 Let’s compile and run 
this program on my 
laptop… 

 Note that my laptop is a 
Mac, so I need to run 
gcc (not clang, which 
sadly doesn’t support 
OpenMP out of the box, 
and “looks like” gcc!)



Data: Private or Shared?

 When using OpenMP threads, we must 
decide which variables they share and which 
variables they don’t share 

 Shared variable: all threads “see” the same 
variable in RAM (the master’s) 

 Private variable: each thread has its own 
copy of the variable 
 Done for you by the compiler! 

 Let’s see this on a tiny program where each 
thread computes a partial sum of an array…



OpenMP Example #2
#define N 2000 
int main(){ 
  omp_set_num_threads(4); 
  int A[4*N]; 
  for (int i=0; i < 4*N; i++) A[i] = i; 
   
  int sum, i, start, end; 
#pragma omp parallel shared(A) private(sum, i, start, end) 
  {  
    sum = 0; 
    start = N * omp_get_thread_num(); 
    end = N * (1 + omp_get_thread_num()); 
    for (i=start; i < end; i++) sum += A[i]; 
    printf("Thread #%d: sum=%d\n”, omp_get_thread_num(), 

sum); 
  } 
}



OpenMP Example #2
#define N 2000 
int main(){ 
  omp_set_num_threads(4); 
  int A[4*N]; 
  for (int i=0; i < 4*N; i++) A[i] = i; 
   
  int sum, i, start, end; 
#pragma omp parallel shared(A) private(sum, i, start, end) 
  {  
    sum = 0; 
    start = N * omp_get_thread_num(); 
    end = N * (1 + omp_get_thread_num()); 
    for (i=start; i < end; i++) sum += A[i]; 
    printf("Thread #%d: sum=%d\n”, omp_get_thread_num(), 

sum); 
  } 
}

Declaring A as private 
would copy the array, 
which is unnecessary and 
harmful to performance

Declaring any of 
these as shared 
would cause bugs



Data: Private or Shared?
 It’s very common to introduce performance or 

correctness bugs by mis-labelling variables in terms 
of shared and private 

 OpenMP allows you to define the default behavior: 

#pragma omp parallel shared(A) default(private) 

 There are other useful variations 
 firstprivate: initialization from the master’s copy 
 lastprivate: the master gets the last value updated by the last 

thread to do an update 
 etc. 
(Look at public on-line resources for all details)



Work Sharing directives

 We have seen the concept of a parallel 
region to run multiple threads 

 Work Sharing directives make it possible 
to have threads “share work” within a 
parallel region: 
 For Loop 
 Sections 
 Single



For Loops

 Share iterations of the loop 
across threads 

 To implement Data-parallelism 
 Program correctness must 

NOT depend on which thread 
executes which iteration 
 No ordering!    



OpenMP Example #3
#include <omp.h> 
#define N 10 
main ()  { 
  int i, chunk; 
  float a[N], b[N], c[N]; 
  for (i=0; i < N; i++)   
    a[i] = b[i] = i * 1.0; 
#pragma omp parallel shared(a, b, c) private(i)   
  {   
  #pragma omp for  
    for (i=0; i < N; i++) {  
      printf(“Thread %d, i=%d”, omp_get_thread_num(), i);   
      c[i] = a[i] + b[i];   
    } 
  }  
}



#include <omp.h> 
#define N 10 
main ()  { 
  int i, chunk; 
  float a[N], b[N], c[N]; 
  for (i=0; i < N; i++)   
    a[i] = b[i] = i * 1.0; 
#pragma omp parallel shared(a, b, c) private(i)   
  {   
  #pragma omp for  
    for (i=0; i < N; i++) {  
      printf(“Thread %d, i=%d”, omp_get_thread_num(), i);   
      c[i] = a[i] + b[i];   
    } 
  }  
}

OpenMP Example #3
Required for 
correctness
Required for 
correctnessRequired for 

performance
Needed for 
performance



For Loop and “nowait”
 With “nowait”, threads do not synchronize at the 

end of the loop 
 i.e., threads may exit the “#pragma omp for” at different 

times 

#pragma omp parallel shared(a, b, c) private(i) {   

  #pragma omp for nowait 
    for (i=0; i < N; i++) {     

      // do some work 

    }   

    // Threads may get here at different times 

  }



Loop Parallelizations
 Not all loops can be safely parallelized 

 Not specific to OpenMP, but OpenMP makes loop 
parallelization so easy that one may forget that “just  
add a #pragma” doesn’t always work 

 If there are inter-iteration dependencies, we can 
have race conditions 

 Simple example: 
 for (i=1; i < N; i++) { 
  a[i] += a[i-1] * a[i-1] 
 } 

 We have a “data dependency”: iteration i needs data 
produced by previous iteration i-1



Three Kinds of Dependencies
 Consider a for loop:  for (i=0; i < N; i++) 
 Data dependency: 

 Example: a[i] += a[i-1] * a[i-1]; 
 Iteration i needs data produced by a previous 

iteration 
 Anti-dependency: 

 Example: a[i] = a[i+1] * 3; 
 Iteration i must use data before it is updated by the 

next iteration 
 Output dependency 

 Example: a[i] = 2*a[i+1]; a[i+2] = 3 * a[i]  
 Different iterations write to the same addresses



Dealing with Dependencies

 Due to dependencies, some loops are 
inherently sequential and simply cannot be 
parallelized 

 Some have race conditions that we could 
fix with locks (we will see how OpenMP 
does locks in a few slides) 
 But in this case, the loop likely becomes 

sequential 
 In fact, slower than sequential due to locking 

overhead



Dealing with Dependencies

 Sometimes, one can rewrite the loop to remove 
dependencies 

 Example: 
 for (i=1; i < N; i++) { 
  a[i] = a[i-1] + 1; 

 } 

 for (i=1; i < N; i++) { 
  a[i] = a[0] + i; 
 }



Loops with Dependencies
 The bottom-line is that dependencies in loops make 

the job of the parallelizing developer/compiler 
difficult 

 Tons of research has gone into this, with compilers 
being able to automatically parallelize some loops 

 But many of the parallelization algorithms are very 
expensive (i.e., high complexity) 

 Often, a developer will have to develop ingenuity to 
“expose loop parallelism” 

 We saw a trivial example of this in the previous slide 
 We’ll see another example at some point…



Sections
 Breaks work into separate sections 
 Each section is executed by a 

thread 
 To implement Task-parallelism 

 do different things on different data 
 If more threads than sections, then 

some threads remain idle 
 If fewer threads than sections, then 

some sections are serialized



OpenMP  Example  #4
#include <omp.h> 
#define N 10 
main (){ 
  int i; 
  float a[N], sum = 0.0, prod = 1.0; 
  omp_set_num_threads(2); 
  for (i=0; i < N; i++)  a[i] = (i + 1) * 1.0; 

#pragma omp parallel shared(a) private(i)   
  {   
  #pragma omp sections    
    {     
    #pragma omp section  // compute sum 
    {     
         for (i=0; i < N; i++)       
           sum += a[i];     
    } 
    #pragma omp section  // compute product 
      { 
         for (i=0; i < N; i++)       
           prod *= a[i]; 
      }    
    }  /* end of sections */   
  }  /* end of parallel region */ 
}



Single
 Serializes a section of code within a 

parallel region 
 Sometimes more convenient  than 

terminating a parallel region and 
starting it later 
 Especially because variables are 

already shared/private, etc. 
 Typically used to serialize a small 

section of the code that’s not thread 
safe 
 e.g., I/O



Combined Directives
 It is cumbersome to create a parallel region and 

then create a parallel for loop, or sections, just to 
terminate the parallel region 

 Therefore OpenMP provides a way to do both at the 
same time 
 #pragma omp parallel for 
 #pragma omp parallel sections 

 Example: 

#pragma omp parallel for shared(a) private(i) 
{ 

    for(i = 0; i < n; i++) a[i] = 0; 
 }



Dealing with Race Conditions
 OpenMP doesn’t magically fix race conditions:  

int x = 0; 
#pragma omp parallel sections shared(x) 
  { 
  #pragma omp section  
    { x++; } 
  #pragma omp section 
    { x--; } 
  }  

 The above code has a race condition, just like 
our first race condition example in Java in this 
course



Synchronization Directives

 Directives for creating critical sections 
 #pragma omp master 

 Creates a region that only the master executes 
(therefore it’s by definition a critical section) 

 #pragma omp critical 
 Creates a critical section 

 #pragma omp atomic 
 Create a “mini” critical section 

 Let’s see a critical section….



OpenMP Example #5
#include <stdio.h> 
#include <omp.h> 
#define N 10 

int main () { 
  int i; 
  float  a[N], sum=0.0; 
  omp_set_num_threads(10); 
  for (i=0; i < N; i++) a[i] = (i + 1) * 1.0; 

#pragma omp parallel shared(a, sum) private(i)   
  { 
  #pragma omp for  
    for (i=0; i < N; i++) { 
      #pragma omp critical 
      { 
        sum += a[i]; 
      } 
    } 
  } 
  printf("sum = %f\n", sum); 
}

This simply inserts 
Pthread lock/
unlock calls in the 
code generated by 
the compiler



OpenMP Example #5
#include <stdio.h> 
#include <omp.h> 
#define N 10 

int main () { 
  int i; 
  float  a[N], sum=0.0; 
  omp_set_num_threads(10); 
  for (i=0; i < N; i++) a[i] = (i + 1) * 1.0; 

#pragma omp parallel shared(a, sum) private(i)   
  { 
  #pragma omp for  
    for (i=0; i < N; i++) { 
      #pragma omp critical 
      { 
        sum += a[i]; 
      } 
    } 
  } 
  printf("sum = %f\n", sum); 
}

This simply inserts 
Pthread lock/
unlock calls in the 
code generated by 
the compiler

This is a terrible “mostly sequential” 
program, let’s rewrite it live using 
partial sums, and compare 
performance! (code on Web site)



OpenMP Atomic Directive
#pragma omp atomic 
  i++; 

Only allowed for some expressions 
x = expr   (no mutual exclusion on expr evaluation) 
x++ 
++x 
x-- 
 --x 

 It’s about atomic access to a memory location 
 Some OpenMP implementations will just replace atomic by 

critical and create a basic blocks with lock/unlock around it 
But some may take advantage of fast hardware instructions that 

can do the above atomically



OpenMP Barrier

   #pragma omp barrier 
  

 All threads in the current parallel region will 
synchronize  

 They will all wait for each other at this instruction 
 Must appear within a basic block 
 Remember that all threads wait for each other 

at the end of a parallel region anyway 
 i.e., there is an implicit barrier there



OpenMP Loop Scheduling

 The “bread and butter” of OpenMP is loops 
 Many developers use OpenMP just to 

parallelize a few loops here and there 
 Especially non-expert developers who want a 

performance boost but  have no desire/way to 
take ICS432 an learn all kinds of crazy stuff 

 Think scientists who develop code, rather than 
people with a CS degree 

 Let’s do a simple loop with 4 threads, where 
each thread merely prints what it’s doing…



Loop Scheduling Example
#include <stdio.h> 
#include <omp.h> 

int main () { 
  int i; 
  omp_set_num_threads(4); 
#pragma omp parallel private(i)   
  { 
  #pragma omp for  
    for (i = 0; i < 10; i++) { 
      printf("Thread #%d: iteration %d\n”,     
             omp_get_thread_num(), i); 
    } 
  } 
} 

Let’s look at the output…



Loop Scheduling Example
#include <stdio.h> 
#include <omp.h> 

int main () { 
  int i; 
  omp_set_num_threads(4); 
#pragma omp parallel private(i)   
  { 
  #pragma omp for  
    for (i = 0; i < 10; i++) { 
      printf("Thread #%d: iteration %d\n”,     
             omp_get_thread_num(), i); 
    } 
  } 
} 

Thread #0: iteration 0 
Thread #1: iteration 3 
Thread #3: iteration 8 
Thread #3: iteration 9 
Thread #2: iteration 6 
Thread #2: iteration 7 
Thread #1: iteration 4 
Thread #1: iteration 5 
Thread #0: iteration 1 
Thread #0: iteration 2 



Static Loop Scheduling

 The behavior of the previous program is 
called static scheduling 

 Ahead of time, we simply partition the 
iteration space as evenly as possible across 
threads 

 This is the default behavior in OpenMP, but 
we could have declared it as: 

  #pragma omp for schedule(static) 
 So, of course, this means there are other 

options…



Dynamic Loop Scheduling
 Another option is to do dynamic loop scheduling 
 Conceptually: threads “grab” the next iteration to do whenever idle 
 This can be done very easily (under the cover) with a lock: 
while (true) { 
  int the_iteration_i_should_do_next; // private to thread 
  lock(); 
  if (next_it < loop_bound) { 
    the_iteration_i_should_do_next = next_it; 
    next_it++; 
    unlock(); 
  } else { 
    unlock(); 
    break; 
  } 
  do iteration(the_iteration_i_should_do_next) 
}



Dynamic Loop Scheduling
 Another option is to do dynamic loop scheduling 
 Conceptually: threads “grab” the next iteration to do whenever idle 
 This can be done very easily (under the cover) with a lock: 
while (true) { 
  int the_iteration_i_should_do_next; // private to thread 
  lock(); 
  if (next_it < loop_bound) { 
    the_iteration_i_should_do_next = next_it; 
    next_it++; 
    unlock(); 
  } else { 
    unlock(); 
    break; 
  } 
  do iteration(the_iteration_i_should_do_next) 
}

Low-key, low-tech  
producer-consumer



Loop Scheduling Example
#include <stdio.h> 
#include <omp.h> 

int main () { 
  int i; 
  omp_set_num_threads(4); 
#pragma omp parallel private(i)   
  { 
  #pragma omp for schedule(dynamic) 
    for (i = 0; i < 10; i++) { 
      printf("Thread #%d: iteration %d\n”,     
             omp_get_thread_num(), i); 
    } 
  } 
} 

Let’s look at the output…



Loop Scheduling Example
#include <stdio.h> 
#include <omp.h> 

int main () { 
  int i; 
  omp_set_num_threads(4); 
#pragma omp parallel private(i)   
  { 
  #pragma omp for schedule(dynamic) 
    for (i = 0; i < 10; i++) { 
      printf("Thread #%d: iteration %d\n”,     
             omp_get_thread_num(), i); 
    } 
  } 
} 

Thread #0: iteration 0 
Thread #0: iteration 4 
Thread #0: iteration 5 
Thread #0: iteration 6 
Thread #0: iteration 7 
Thread #2: iteration 3 
Thread #2: iteration 9 
Thread #0: iteration 8 
Thread #3: iteration 1 
Thread #1: iteration 2



Static vs. Dynamic Scheduling
 Static: 

 👍 Low overhead (each thread just does its own loop on 
its own loop index range) 

 👎 Poor load balancing if iterations are not of the same 
duration 

 Dynamic: 
 👎 High overhead (use of a critical section to update 

iteration index) 
 👍 Good load balancing if iterations are not of the same 

duration 
 Bottom-line so far: if you know all your iterations 

take the same time, use static!



Dynamic Scheduling Overhead
 If you have many iterations, doing dynamic 

scheduling where threads do only one iteration at 
a time could be very wasteful 

 Instead, we would  like to give out groups of 
iterations to threads each time 

 Real-life metaphor: you have a set of documents 
to process and 10 workers working on a different 
floor. Each time one comes by your office asking 
“what should I do next?” given them a small stack 
of documents to process, not just one, so as to 
minimize overhead 

 OpenMP allows you to do just that…



Loop Scheduling Example
#include <stdio.h> 
#include <omp.h> 

int main () { 
  int i; 
  omp_set_num_threads(4); 
#pragma omp parallel private(i)   
  { 
  #pragma omp for schedule(dynamic, 3) 
    for (i = 0; i < 10; i++) { 
      printf("Thread #%d: iteration %d\n”,     
             omp_get_thread_num(), i); 
    } 
  } 
} 

Let’s look at the output…

Specifies a 
“chunk size” of 3



Loop Scheduling Example
#include <stdio.h> 
#include <omp.h> 

int main () { 
  int i; 
  omp_set_num_threads(4); 
#pragma omp parallel private(i)   
  { 
  #pragma omp for schedule(dynamic, 3) 
    for (i = 0; i < 10; i++) { 
      printf("Thread #%d: iteration %d\n”,     
             omp_get_thread_num(), i); 
    } 
  } 
} 

Let’s look at the output…

Thread #1: iteration 0 
Thread #1: iteration 1 
Thread #1: iteration 2 
Thread #2: iteration 6 
Thread #2: iteration 7 
Thread #2: iteration 8 
Thread #3: iteration 9 
Thread #0: iteration 3 
Thread #0: iteration 4 
Thread #0: iteration 5



How big a Chunk Size?

 Say you use schedule(dynamic) for a loop with 
iterations with non-uniform work per iteration 

 Using a chunk size of 1 is not great, due to 
high overhead if iterations are short 

 Using too large a chunk size is not great, due 
to poor load balancing if iterations are not 
uniform 

 This begs the question: which chunk size 
should I use? 

 But perhaps using a single chunk size isn’t 
even such a good idea?…



Guided Scheduling
 At the beginning of the execution, using small chunks is not a 

good idea 
 Load-balancing doesn’t really matter then 

 At the end of the execution, using big chunks is not a good idea 
 Load-balancing matters a lot then 

 Real-life metaphor: 
 You have 10 workers and a million things for them to do 
 It’s probably ok to, at first, give then each 10,000 things to do, as if one 

gets  “unlucky” they just won’t come back for a while 
 But when you get down to, say, 100 things to do, then you probably 

want to be careful and give out work in small chunks, so that you won’t 
end up waiting for an “unlucky” worker 

 Take-away: It’s probably a good idea to decrease the chunk size 
through the execution 

 This is called guided scheduling…



Guided Scheduling

 Say we have 4 threads and this many 
iterations:



Guided Scheduling

 We split the iterations in halves...



Guided Scheduling

 Then we split each piece into 4 chunks



Guided Scheduling

 Then we split each piece into 4 chunks



Guided Scheduling

 Then we split each piece into 4 chunks



Guided Scheduling

 Chunks are assigned to threads 
dynamically from left to right order

 We can specify the minimum chunk size 
#pragma amp for schedule(guided,100) 



Picking a Scheduling Strategy

 When parallelizing a loop we now have 
several scheduling strategies 

 Although we can have good guesses on 
which strategy will work best for extreme 
situations, it’s often a good idea to simply run 
experiments to determine what works best fo 
our particular program 
 This is because, as usual, performance behavior 

of complicated, compiled code on a complicated 
multi-core architecture is hard to fully predict/
understand



Nested Loops
 Often we have to parallelize nested loops 
 The question then is: which loop do we put 

the pragma on?

   
   for (i = 0; i < N; i++) { 
      for (j = 0; j < N; j++) { 
         // loop body 
      } 
    } 
  



Nested Loops
 Often we have to parallelize nested loops 
 The question then is: which loop do we put 

the pragma on?
#pragma omp parallel private(i,j) 
{  
  #pragma omp for schedule(???) 
  for (i = 0; i < N; i++) { 
    for (j = 0; j < N; j++) { 
      // loop body 
    } 
  } 
}

outer loop



Nested Loops
 Often we have to parallelize nested loops 
 The question then is: which loop do we put 

the pragma on?
for (i = 0; i < N; i++) { 
  #pragma omp parallel private(i,j) 
  {  
  #pragma omp for schedule(???) 
    for (j = 0; j < N; j++) { 
      // loop body 
    } 
  } 
}

inner loop



Collapsing Loops

 If parallelizing the outer loop, assuming a chunk 
size of 1, threads have to do N “big” iterations 

 If parallelizing the inner loop, assuming a chunk 
size of 1, threads have to do N “small” 
iterations, N times 

 If the body of the loop is relatively expensive to 
compute and non-deterministic, then we may 
want to have threads do N*N “small” iterations 
to improve load balancing 

 We could rewrite the loop as a single loop by 
hand…



Collapsing Loops by Hand
   for (i = 0; i < N; i++) { 
      for (j = 0; j < N; j++) { 
         // loop body 
      } 
    }

   for (x = 0 ; x < N*N ; x++) { 
      i = x/N;  
      j = x % N; 
     // loop body   

   }



Collapsing Loops with OpenMP
#pragma omp parallel private(i,j) 
{  

  #pragma omp for schedule(???) collapse(2) 
  for (i = 0; i < N; i++) { 
    for (j = 0; j < N; j++) { 
      // loop body 
    } 
  } 
}

 There can be no code between the two for loops 
 Loops cannot depend on each other



Conclusion

 Several ways to do multi-threading in C/C++ 
 OpenMP is popular because it strikes a good 

compromise between convenience and 
expressivity 
 You can do a lot with very little code 
 A lot of online material, including this tutorial 
 There are MANY features I haven’t talked about 

 Typically, “systems” people use Pthreads, 
while “applications” people use OpenMP 

 Let’s look at Homework Assignment #11…

https://computing.llnl.gov/tutorials/openMP/

