Threads in Other

Languages

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)



" A
Goals

® Most languages provide ways to do threads,
and there are many “thread” libraries, that

looks very much like what we've seen in Java
and C

m But there are some languages that do things
a bit differently, in good and bad ways

® The objective here is to just go through a few
interesting things for:

Python
Javascript
Rust



"
Python

® As you recall from your Operating Systems course, there
are two kind of threads:

User-level threads (also called “green” threads): purely in user
space, the kernel doesn’t know about them, and they thus
cannot run on different cores

Kernel-level threads: known to the kernel, that can run on
different cores
m \With green threads, there is no way to achieve higher
performance for compute-bound operations by using
multiple cores

And it's even iffy for interactivity if there is one CPU-bound
thread

Basically, threads have to willingly give up the CPU
This is the case when all threads do I/O, waiting, sleeping



"
Python using threading

® The Python interpreter was designed a long time ago, and it is
well known for having a Global Interpreter Lock (GIL): only
one thread can do “python things” at a time

® A common mistake of developers is to use “threads” in
Python, and expect to achieve a parallel speedup for
compute-bound operations!
m Python provides a threading package that does green
threads
There is also a thread package, which behaves the same
® | hear “l use threads in Python and | get no speedup, what'’s
going on??” Is super common
m | et's look and run a Python program that uses the
threading package, and thus looks parallel
Web site: python_green_threads example.py



"
Python using threading

® Green threads can share memory
m | et’'s look at a program that demonstrates that memory
IS shared
Web site: python_green_threads example_ sharing.py

B Big question about this program: is it thread-safe??
At first glance it “shouldn’t” since multiple threads update a
data structure concurrently
m |t is thread-safe because these are green threads! There
IS no context-switching unless a thread sleeps/blocks/
ends

m So we don’t get multi-core performance, but at least we
don’t get race conditions!



"
Python multiprocessing

®m Turns out, Python has another package
called multiprocessing, which avoids the

“green threads”problem

m |t uses processes and makes them look like
threads!

m | et's look at a program very similar to our first
multi-threaded program

Web site: python processes example.py



"
Python ThreadPool

B The multiprocessing package provides
a convenient “pool” abstraction
Which really should be named “process pool”
But there is a (green) threadpool version

® |t's really convenient and allows to write very
short programs

m | et's just look at a simple example that
applies a function in parallel to elements of
an array:

Website: python_processes pool example.py



"
Python multiprocessing

® S0, that's great, but these aren't threads, they
are processes, so they don’t share memory
m |_et’'s confirm this by looking at that program:

Web site:
python_processes example no_sharing.py

® \What if we want both:

Multi-core speedups for compute-bound
computations

Shared memory



"
Python multiprocessing

®m The multiprocessing module makes it possible to use “shared
memory segments” (mentioned earlier this semester, and likely in
any Operating Systems course)

®m Python makes it looks relatively nice (I guess):
Web site: python_processes example sharing.py

m Note that in this example processes write to different elements in a
“sharable list”

m But if they need to update the same elements, then there could be
race conditions, because a sharable list is not process-safe!

® \We then have to use locks
That the multiprocessing module provides

®m There are other data structures in the module, like a queue, that are
process-safe

m S0 just like in any language, we have to know which provided data
structures are safe, and which aren't...



"
Python and Concurrency

® The amount of confusion and wrong information
regarding concurrency in Python is astounding

| found many, many online “tutorials” or “examples” that
have plain wrong statements

m But if you know the basics it's really simple:

Python does not support standard kernel threads, due to
the GIL

If using green threads there is shared memory and
mostly thread-safety (you can cause race conditions if
you really want), but no multi-core speedup

If using non-green threads, then they are really
processes, and you can have shared memory segments,
and then you can watch out for race conditions



" J
Wait! Python 3.13

® The very recent Python 3.13 (released October 7
2024) has something exciting
® https://docs.python.org/3/whatsnew/3.13.html

“CPython now has experimental support for running in a

free-threaded mode, with the global interpreter lock (GIL)
disabled”

m |et’s look at: https://peps.python.org/pep-0703/
Let’s search for “multiprocessing” in that page

B People have been complaining about the GIL for
years, and turns out a big motivation for fixing it now
Is Al and GPUs!

After all, if Python want to remain a “language for Data
Science and Al’, it needed to fix this



https://docs.python.org/3/whatsnew/3.13.html
https://peps.python.org/pep-0703/

" A
Rust

® Rust came out of Mozilla, and has been adopted by many
big tech companies as a “safe and concurrent” option

Now an official language for Linux kernel development
®m No Invalid pointers/references

Validity is checked at compile time
® No memory leaks

But, unlike Java, it doesn’t use a garbage collector, and unlike
C++, it doesn’t use reference counting!!

All checked at compile time
®m No data races
e.g., the “lost update” bug

Notion of mutability / immutability of data and of data owner
® (basically, a mutable reference can have a single owner)



"
Message Passing

®m One “safety first” philosophy is that threads should not
communicate by sharing memory but instead via
message passing

From the Golang documentation: “Do not communicate by
sharing memory; instead, share memory by communicating”

® The rationale is that concurrency and shared memory is
too difficult and leads to too many bugs
Especially when developers get “creative”
m Often the goal is just to communicate, so let’s just have
send() and recv() operations on communication channels

Of course that’s what we do routinely for distributed-memory
computing (see ICS632)

m | et’'s see how Rust does message passing



"
Message Passing in Rust

® Rust channel:

An abstraction through which one or more threads
can send a message to one receiver thread

use std::sync::mpsc;
use std::thread;

fn main() {
let (tx, rx) = mpsc::channel();

thread: : spawn (move || {
let val = String::from("hi") ;
println! ("Sending: {}", wval);
tx.send(val) .unwrap() ;

});

let received = rx.recv () .unwrap()
println! ("Got: {}", received);



Message Passing in Rust

® Rust channel:

An abstraction through which one or more threads
can send a message to one receiver thread

use std::sync: :mpsc;
use std::thread;

fn main() {

let (tx, rx) = mpsc::channel () ;

thread: :spawn (move || {

let val = String::from("h
println! ("Sending: {}", va

tx.send (val) .unwrap() ;

println! ("Sent: {}", val);

})

Adding this line causes
a compilation error,
because after sending a
value one is no longer

%its owner! Safety first!

let received = rx.recv () .unwrap() ;

println! ("Got: {}", received);



" J
Message Passing in Java?

m Java does not support message passing
between threads natively
m But of course it's very easy to emulate
Use a BlockingQueue of whatever Objects
Senders put “messages” into the queue
A receiver gets “messages’ into the queue

m This is basically Producer-Consumer

And a Rust channel is basically a N-producers-1-
consumer message buffer

m But Rusts adds all kinds of safety to this (e.g.,
the ownership feature in the previous slide)



"
Sharing State in Rust

B Doing everything with message passing is
not always easy, so Rust makes it possible to
share state (i.e., RAM) between threads

® |t provides the notion of “value protected by a
mutex”

l.e., you “lock memory” instead of “locking code”

® There are many details here, but let’s just
look at a standard Rust example...



" S
Sharing state in Rust

Atomic Reference

use std::sync::{Arc, Mutex};

use std::thread; Counted
fn main() {
// create a shared int ue

let shared_state = Arc::new(Mutex::new(0));
// create 16 threads that update the value
let mut threads = vec![];
for _ in 0..16 {
// create an atomic copy of the shared state
let shared_state = Arc::clone(&shared_state);
let child_thread = thread::spawn(move || {
let mut num = shared_state.lock().unwrap();
knum += 1;
});
threads.push(child_thread);
}
// wait for all threads to complete
for child_thread in threads {
child_thread.join() .unwrap();

}
println! ("Result: {}", xshared_state.lock().unwrap());



" J
Sharing State in Java?

® |n Java, one could opt to never use locks/
synchronized but only use Atomics

e.g., Java.util.concurrent.atomic.Atomiclnteger

® But in Rust, that’s the only option, which is
safer

® \What about condition variables in Rust?



"
Rust Condition Variables

use std::sync::{Arc, Mutex, Condvar};
use std::thread;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = Arc::clone(&pair);

// Spawn a new thread
thread: :spawn(move || {
let (lock, cvar) = &*pair2;
// Get the lock
let mut started = lock.lock().unwrap();
*started = true;
// Notify the condvar
cvar.notify one();

})i

// Wait for the thread to signal that it has started
let (lock, cvar) = &*pair;
let mut started = lock.lock() .unwrap();
while !*started { // Typical while loop
started = cvar.wait(started) .unwrap();

}



"
Rust Takeaway

® The underlying concepts/mechanisms are the
same as what we’ve talked about all semester

® But because of the pitfalls/difficulties of
concurrency, Rust tries to constrain what users
can do

Or at least they have to really make it clear they're
doing something dangerous

There is an unsafe keyword in Rust!

m People vastly disagree on whether this is a good
idea of course

® The good news: once you know all the concepts,
the rest is just development details/constraints



" J
Javascript?

® Javascript was never designed to support kernel threads

The well-known async/wait stuff in Javascript is often implemented
using user-level “green” threads

® S0 there is no multi-core speedup for concurrency between
compute-bound activities in Javascript in the browser

Typically, we don’t care as long compute-bound stuff is sent to the
backend and the frontend just does async/wait

m But browsers run on multi-core machines, and so perhaps we
want multi-core speedup in the browser

® That's when you can use Web Workers
They come with all kinds of constraints/gotchas, but they work

| thought of doing our image processing app as a Web app and
have you write Web Workers, but then decided against it because it
was just too odd/difficult (but interesting!)... perhaps one day?

If time, we can look at some code...



" A
Conclusion

® |n my personal experience, if you don’t know
the basic concepts, it can be very difficult to
understand how higher-level abstractions
and/or language constructs work

B The amount of confusion and misinformation
out there is pretty stunning



