
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Threads in Other
Languages

Goals

 Most languages provide ways to do threads,
and there are many “thread” libraries, that
looks very much like what we’ve seen in Java
and C

 But there are some languages that do things
a bit differently, in good and bad ways

 The objective here is to just go through a few
interesting things for:
 Python
 Javascript
 Rust

Python
 As you recall from your Operating Systems course, there

are two kind of threads:
 User-level threads (also called “green” threads): purely in user

space, the kernel doesn’t know about them, and they thus
cannot run on different cores

 Kernel-level threads: known to the kernel, that can run on
different cores

 With green threads, there is no way to achieve higher
performance for compute-bound operations by using
multiple cores

 And it’s even iffy for interactivity if there is one CPU-bound
thread

 Basically, threads have to willingly give up the CPU
 This is the case when all threads do I/O, waiting, sleeping

Python using threading
 The Python interpreter was designed a long time ago, and it is

well known for having a Global Interpreter Lock (GIL): only
one thread can do “python things” at a time

 A common mistake of developers is to use “threads” in
Python, and expect to achieve a parallel speedup for
compute-bound operations!

 Python provides a threading package that does green
threads

 There is also a thread package, which behaves the same
 I hear “I use threads in Python and I get no speedup, what’s

going on??” Is super common
 Let’s look and run a Python program that uses the
threading package, and thus looks parallel

 Web site: python_green_threads_example.py

Python using threading
 Green threads can share memory
 Let’s look at a program that demonstrates that memory

is shared
 Web site: python_green_threads_example_sharing.py

 Big question about this program: is it thread-safe??
 At first glance it “shouldn’t” since multiple threads update a

data structure concurrently
 It is thread-safe because these are green threads! There

is no context-switching unless a thread sleeps/blocks/
ends

 So we don’t get multi-core performance, but at least we
don’t get race conditions!

Python multiprocessing

 Turns out, Python has another package
called multiprocessing, which avoids the
“green threads”problem

 It uses processes and makes them look like
threads!

 Let’s look at a program very similar to our first
multi-threaded program
 Web site: python_processes_example.py

Python ThreadPool

 The multiprocessing package provides
a convenient “pool” abstraction
 Which really should be named “process pool”
 But there is a (green) threadpool version

 It’s really convenient and allows to write very
short programs

 Let’s just look at a simple example that
applies a function in parallel to elements of
an array:
 Website: python_processes_pool_example.py

Python multiprocessing

 So, that’s great, but these aren’t threads, they
are processes, so they don’t share memory

 Let’s confirm this by looking at that program:
 Web site:

python_processes_example_no_sharing.py

 What if we want both:
 Multi-core speedups for compute-bound

computations
 Shared memory

Python multiprocessing
 The multiprocessing module makes it possible to use “shared

memory segments” (mentioned earlier this semester, and likely in
any Operating Systems course)

 Python makes it looks relatively nice (I guess):
 Web site: python_processes_example_sharing.py

 Note that in this example processes write to different elements in a
“sharable list”

 But if they need to update the same elements, then there could be
race conditions, because a sharable list is not process-safe!

 We then have to use locks
 That the multiprocessing module provides

 There are other data structures in the module, like a queue, that are
process-safe

 So just like in any language, we have to know which provided data
structures are safe, and which aren’t…

Python and Concurrency
 The amount of confusion and wrong information

regarding concurrency in Python is astounding
 I found many, many online “tutorials” or “examples” that

have plain wrong statements
 But if you know the basics it’s really simple:

 Python does not support standard kernel threads, due to
the GIL

 If using green threads there is shared memory and
mostly thread-safety (you can cause race conditions if
you really want), but no multi-core speedup

 If using non-green threads, then they are really
processes, and you can have shared memory segments,
and then you can watch out for race conditions

Wait! Python 3.13
 The very recent Python 3.13 (released October 7

2024) has something exciting
 https://docs.python.org/3/whatsnew/3.13.html

 “CPython now has experimental support for running in a
free-threaded mode, with the global interpreter lock (GIL)
disabled”

 Let’s look at: https://peps.python.org/pep-0703/
 Let’s search for “multiprocessing” in that page

 People have been complaining about the GIL for
years, and turns out a big motivation for fixing it now
is AI and GPUs!
 After all, if Python want to remain a “language for Data

Science and AI”, it needed to fix this

https://docs.python.org/3/whatsnew/3.13.html
https://peps.python.org/pep-0703/

Rust

 Rust came out of Mozilla, and has been adopted by many
big tech companies as a “safe and concurrent” option

 Now an official language for Linux kernel development
 No Invalid pointers/references

 Validity is checked at compile time
 No memory leaks

 But, unlike Java, it doesn’t use a garbage collector, and unlike
C++, it doesn’t use reference counting!!

 All checked at compile time
 No data races

 e.g., the “lost update” bug
 Notion of mutability / immutability of data and of data owner

 (basically, a mutable reference can have a single owner)

Message Passing
 One “safety first” philosophy is that threads should not

communicate by sharing memory but instead via
message passing

 From the Golang documentation: “Do not communicate by
sharing memory; instead, share memory by communicating”

 The rationale is that concurrency and shared memory is
too difficult and leads to too many bugs

 Especially when developers get “creative”
 Often the goal is just to communicate, so let’s just have

send() and recv() operations on communication channels
 Of course that’s what we do routinely for distributed-memory

computing (see ICS632)
 Let’s see how Rust does message passing

Message Passing in Rust
 Rust channel:

 An abstraction through which one or more threads
can send a message to one receiver thread

use std::sync::mpsc;
use std::thread;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");

println!("Sending: {}", val);
 tx.send(val).unwrap();
 });

 let received = rx.recv().unwrap();
 println!("Got: {}", received);
}

Message Passing in Rust
 Rust channel:

 An abstraction through which one or more threads
can send a message to one receiver thread

use std::sync::mpsc;
use std::thread;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hi");

println!("Sending: {}", val);
 tx.send(val).unwrap();

println!("Sent: {}", val);
 });

 let received = rx.recv().unwrap();
 println!("Got: {}", received);
}

Adding this line causes
a compilation error,
because after sending a
value one is no longer
its owner! Safety first!

Message Passing in Java?

 Java does not support message passing
between threads natively

 But of course it’s very easy to emulate
 Use a BlockingQueue of whatever Objects
 Senders put “messages” into the queue
 A receiver gets “messages” into the queue

 This is basically Producer-Consumer
 And a Rust channel is basically a N-producers-1-

consumer message buffer
 But Rusts adds all kinds of safety to this (e.g.,

the ownership feature in the previous slide)

Sharing State in Rust

 Doing everything with message passing is
not always easy, so Rust makes it possible to
share state (i.e., RAM) between threads

 It provides the notion of “value protected by a
mutex”
 i.e., you “lock memory” instead of “locking code”

 There are many details here, but let’s just
look at a standard Rust example...

Sharing state in Rust
use std::sync::{Arc, Mutex};
use std::thread;
fn main() {
 // create a shared integer value
 let shared_state = Arc::new(Mutex::new(0));
 // create 16 threads that update the value
 let mut threads = vec![];
 for _ in 0..16 {
 // create an atomic copy of the shared state
 let shared_state = Arc::clone(&shared_state);
 let child_thread = thread::spawn(move || {
 let mut num = shared_state.lock().unwrap();
 *num += 1;
 });
 threads.push(child_thread);
 }
 // wait for all threads to complete
 for child_thread in threads {
 child_thread.join().unwrap();
 }
 println!("Result: {}", *shared_state.lock().unwrap());
}

Atomic Reference
Counted

Sharing State in Java?

 In Java, one could opt to never use locks/
synchronized but only use Atomics
 e.g., java.util.concurrent.atomic.AtomicInteger

 But in Rust, that’s the only option, which is
safer

 What about condition variables in Rust?

Rust Condition Variables
use std::sync::{Arc, Mutex, Condvar};
use std::thread;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = Arc::clone(&pair);

// Spawn a new thread
thread::spawn(move || {
 let (lock, cvar) = &*pair2;
 // Get the lock

 let mut started = lock.lock().unwrap();
 *started = true;
 // Notify the condvar
 cvar.notify_one();
});

// Wait for the thread to signal that it has started
let (lock, cvar) = &*pair;
let mut started = lock.lock().unwrap();
while !*started { // Typical while loop
 started = cvar.wait(started).unwrap();
}

Rust Takeaway
 The underlying concepts/mechanisms are the

same as what we’ve talked about all semester
 But because of the pitfalls/difficulties of

concurrency, Rust tries to constrain what users
can do
 Or at least they have to really make it clear they’re

doing something dangerous
 There is an unsafe keyword in Rust!

 People vastly disagree on whether this is a good
idea of course

 The good news: once you know all the concepts,
the rest is just development details/constraints

Javascript?
 Javascript was never designed to support kernel threads

 The well-known async/wait stuff in Javascript is often implemented
using user-level “green” threads

 So there is no multi-core speedup for concurrency between
compute-bound activities in Javascript in the browser

 Typically, we don’t care as long compute-bound stuff is sent to the
backend and the frontend just does async/wait

 But browsers run on multi-core machines, and so perhaps we
want multi-core speedup in the browser

 That’s when you can use Web Workers
 They come with all kinds of constraints/gotchas, but they work
 I thought of doing our image processing app as a Web app and

have you write Web Workers, but then decided against it because it
was just too odd/difficult (but interesting!)… perhaps one day?

 If time, we can look at some code...

Conclusion

 In my personal experience, if you don’t know
the basic concepts, it can be very difficult to
understand how higher-level abstractions
and/or language constructs work

 The amount of confusion and misinformation
out there is pretty stunning

