
Henri Casanova (henric@hawaii.edu)

ICS432 
Concurrent and High-Performance  

Programming

Threads in Other 
Languages 



Goals

 Most languages provide ways to do threads, 
and there are many “thread” libraries, that 
looks very much like what we’ve seen in Java 
and C 

 But there are some languages that do things 
a bit differently, in good and bad ways 

 The objective here is to just go through a few 
interesting things for: 
 Python 
 Javascript 
 Rust



Python
 As you recall from your Operating Systems course, there 

are two kind of threads: 
 User-level threads (also called “green” threads): purely in user 

space, the kernel doesn’t know about them, and they thus 
cannot run on different cores 

 Kernel-level threads: known to the kernel, that can run on 
different cores 

 With green threads, there is no way to achieve higher 
performance for compute-bound operations by using 
multiple cores 

 And it’s even iffy for interactivity if there is one CPU-bound 
thread 

 Basically, threads have to willingly give up the CPU 
 This is the case when all threads do I/O, waiting, sleeping



Python using threading
 The Python interpreter was designed a long time ago, and it is 

well known for having a Global Interpreter Lock (GIL): only 
one thread can do “python things” at a time 

 A common mistake of developers is to use “threads” in 
Python, and expect to achieve a parallel speedup for 
compute-bound operations! 

 Python provides a threading package that does green 
threads 

 There is also a thread package, which behaves the same 
 I hear “I use threads in Python and I get no speedup, what’s 

going on??” Is super common 
 Let’s look and run a Python program that uses the 
threading package, and thus looks parallel 

 Web site: python_green_threads_example.py



Python using threading
 Green threads can share memory 
 Let’s look at a program that demonstrates that memory 

is shared 
 Web site: python_green_threads_example_sharing.py 

 Big question about this program: is it thread-safe?? 
 At first glance it “shouldn’t” since multiple threads update a 

data structure concurrently 
 It is thread-safe because these are green threads! There 

is no context-switching unless a thread sleeps/blocks/
ends 

 So we don’t get multi-core performance, but at least we 
don’t get race conditions!



Python multiprocessing

 Turns out, Python has another package 
called multiprocessing, which avoids the 
“green threads”problem 

 It uses processes and makes them look like 
threads! 

 Let’s look at a program very similar to our first 
multi-threaded program 
 Web site: python_processes_example.py



Python ThreadPool

 The multiprocessing package provides 
a convenient “pool” abstraction 
 Which really should be named “process pool” 
 But there is a (green) threadpool version 

 It’s really convenient and allows to write very 
short programs 

 Let’s just look at a simple example that 
applies a function in parallel to elements of 
an array: 
 Website: python_processes_pool_example.py



Python multiprocessing

 So, that’s great, but these aren’t threads, they 
are processes, so they don’t share memory 

 Let’s confirm this by looking at that program: 
 Web site: 

python_processes_example_no_sharing.py 

 What if we want both: 
 Multi-core speedups for compute-bound 

computations 
 Shared memory



Python multiprocessing
 The multiprocessing module makes it possible to use “shared 

memory segments” (mentioned earlier this semester, and likely in 
any Operating Systems course) 

 Python makes it looks relatively nice (I guess): 
 Web site: python_processes_example_sharing.py 

 Note that in this example processes write to different elements in a 
“sharable list” 

 But if they need to update the same elements, then there could be 
race conditions, because a sharable list is not process-safe! 

 We then have to use locks 
 That the multiprocessing module provides 

 There are other data structures in the module, like a queue, that are 
process-safe 

 So just like in any language, we have to know which provided data 
structures are safe, and which aren’t…



Python and Concurrency
 The amount of confusion and wrong information 

regarding concurrency in Python is astounding 
 I found many, many online “tutorials” or “examples” that 

have plain wrong statements 
 But if you know the basics it’s really simple: 

 Python does not support standard kernel threads, due to 
the GIL 

 If using green threads there is shared memory and 
mostly thread-safety (you can cause race conditions if 
you really want), but no multi-core speedup 

 If using non-green threads, then they are really 
processes, and you can have shared memory segments, 
and then you can watch out for race conditions



Wait! Python 3.13
 The very recent Python 3.13 (released October 7 

2024) has something exciting 
 https://docs.python.org/3/whatsnew/3.13.html 

 “CPython now has experimental support for running in a 
free-threaded mode, with the global interpreter lock (GIL) 
disabled” 

 Let’s look at: https://peps.python.org/pep-0703/ 
 Let’s search for “multiprocessing” in that page 

 People have been complaining about the GIL for 
years, and turns out a big motivation for fixing it now 
is AI and GPUs! 
 After all, if Python want to remain a “language for Data 

Science and AI”, it needed to fix this

https://docs.python.org/3/whatsnew/3.13.html
https://peps.python.org/pep-0703/


Rust

 Rust came out of Mozilla, and has been adopted by many 
big tech companies as a “safe and concurrent” option 

 Now an official language for Linux kernel development 
 No Invalid pointers/references 

 Validity is checked at compile time  
 No memory leaks 

 But, unlike Java, it doesn’t use a garbage collector, and unlike 
C++, it doesn’t use reference counting!! 

 All checked at compile time 
 No data races 

 e.g., the “lost update” bug 
 Notion of mutability / immutability of data and of data owner 

 (basically, a mutable reference can have a single owner)



Message Passing
 One “safety first” philosophy is that threads should not 

communicate by sharing memory but instead via 
message passing 

 From the Golang documentation: “Do not communicate by 
sharing memory; instead, share memory by communicating” 

 The rationale is that concurrency and shared memory is 
too difficult and leads to too many bugs 

 Especially when developers get “creative” 
 Often the goal is just to communicate, so let’s just have 

send() and recv() operations on communication channels 
 Of course that’s what we do routinely for distributed-memory 

computing (see ICS632) 
 Let’s see how Rust does message passing



Message Passing in Rust
 Rust channel: 

 An abstraction through which one or more threads 
can send a message to one receiver thread

use std::sync::mpsc; 
use std::thread; 

fn main() { 
    let (tx, rx) = mpsc::channel(); 

    thread::spawn(move || { 
        let val = String::from("hi"); 

println!("Sending: {}", val); 
        tx.send(val).unwrap(); 
    }); 

    let received = rx.recv().unwrap(); 
    println!("Got: {}", received); 
} 



Message Passing in Rust
 Rust channel: 

 An abstraction through which one or more threads 
can send a message to one receiver thread

use std::sync::mpsc; 
use std::thread; 

fn main() { 
    let (tx, rx) = mpsc::channel(); 

    thread::spawn(move || { 
        let val = String::from("hi"); 

println!("Sending: {}", val); 
        tx.send(val).unwrap(); 

println!("Sent: {}", val); 
    }); 

    let received = rx.recv().unwrap(); 
    println!("Got: {}", received); 
} 

Adding this line causes 
a compilation error, 
because after sending a 
value one is no longer 
its owner!  Safety first!



Message Passing in Java?

 Java does not support message passing 
between threads natively 

 But of course it’s very easy to emulate 
 Use a BlockingQueue of whatever Objects 
 Senders put “messages” into the queue 
 A receiver gets “messages” into the queue 

 This is basically Producer-Consumer 
 And a Rust channel is basically a N-producers-1-

consumer message buffer 
 But Rusts adds all kinds of safety to this (e.g., 

the ownership feature in the previous slide)



Sharing State in Rust

 Doing everything with message passing is 
not always easy, so Rust makes it possible to 
share state (i.e., RAM) between threads 

 It provides the notion of “value protected by a 
mutex” 
 i.e., you “lock memory” instead of “locking code” 

 There are many details here, but let’s just 
look at a standard Rust example...



Sharing state in Rust
use std::sync::{Arc, Mutex}; 
use std::thread; 
fn main() { 
    // create a shared integer value 
    let shared_state = Arc::new(Mutex::new(0)); 
    // create 16 threads that update the value 
    let mut threads = vec![]; 
    for _ in 0..16 { 
        // create an atomic copy of the shared state 
        let shared_state = Arc::clone(&shared_state); 
        let child_thread = thread::spawn(move || { 
            let mut num = shared_state.lock().unwrap(); 
            *num += 1; 
        }); 
        threads.push(child_thread); 
    } 
    // wait for all threads to complete 
    for child_thread in threads { 
        child_thread.join().unwrap(); 
    } 
    println!("Result: {}", *shared_state.lock().unwrap()); 
}

Atomic Reference 
Counted



Sharing State in Java?

 In Java, one could opt to never use locks/
synchronized but only use Atomics 
 e.g., java.util.concurrent.atomic.AtomicInteger 

 But in Rust, that’s the only option, which is 
safer 

 What about condition variables in Rust?



Rust Condition Variables
use std::sync::{Arc, Mutex, Condvar};
use std::thread;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = Arc::clone(&pair);

// Spawn a new thread
thread::spawn(move || {
    let (lock, cvar) = &*pair2;
  // Get the lock

    let mut started = lock.lock().unwrap();
    *started = true;
    // Notify the condvar
    cvar.notify_one();
});

// Wait for the thread to signal that it has started
let (lock, cvar) = &*pair;
let mut started = lock.lock().unwrap();
while !*started { // Typical while loop
    started = cvar.wait(started).unwrap();
}



Rust Takeaway
 The underlying concepts/mechanisms are the 

same as what we’ve talked about all semester 
 But because of the pitfalls/difficulties of 

concurrency, Rust tries to constrain what users 
can do 
 Or at least they have to really make it clear they’re 

doing something dangerous 
 There is an unsafe keyword in Rust! 

 People vastly disagree on whether this is a good 
idea of course 

 The good news: once you know all the concepts, 
the rest is just development details/constraints



Javascript?
 Javascript was never designed to support kernel threads 

 The well-known async/wait stuff in Javascript is often implemented 
using user-level “green” threads 

 So there is no multi-core speedup for concurrency between 
compute-bound activities in Javascript in the browser 

 Typically, we don’t care as long compute-bound stuff is sent to the 
backend and the frontend just does async/wait 

 But browsers run on multi-core machines, and so perhaps we 
want multi-core speedup in the browser 

 That’s when you can use Web Workers 
 They come with all kinds of constraints/gotchas, but they work 
 I thought of doing our image processing app as a Web app and 

have you write Web Workers, but then decided against it because it 
was just too odd/difficult (but interesting!)… perhaps one day? 

 If time, we can look at some code...



Conclusion

 In my personal experience, if you don’t know 
the basic concepts, it can be very difficult to 
understand how higher-level abstractions 
and/or language constructs work 

 The amount of confusion and misinformation 
out there is pretty stunning


